Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder
Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a...
Saved in:
| Published in: | Geophysical Prospecting Vol. 72; no. 4; pp. 1428 - 1441 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Houten
Wiley Subscription Services, Inc
01.05.2024
|
| Subjects: | |
| ISSN: | 0016-8025, 1365-2478 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the t−x$t-x$ domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the f−x$f-x$ deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision. |
|---|---|
| AbstractList | Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the t−x$t-x$ domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the f−x$f-x$ deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision. Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision. |
| Author | Lin, Haoran Liu, Huaishan Li, Qianqian Xu, Jian Xing, Lei |
| Author_xml | – sequence: 1 givenname: Haoran surname: Lin fullname: Lin, Haoran organization: Qingdao National Laboratory for Marine Science and Technology – sequence: 2 givenname: Jian surname: Xu fullname: Xu, Jian organization: ZheJiang HuaDong Construction Engineering Co., Ltd – sequence: 3 givenname: Lei orcidid: 0000-0002-1629-5822 surname: Xing fullname: Xing, Lei email: xingleiouc@ouc.edu.cn organization: Qingdao National Laboratory for Marine Science and Technology – sequence: 4 givenname: Qianqian surname: Li fullname: Li, Qianqian organization: Ocean University of China – sequence: 5 givenname: Huaishan surname: Liu fullname: Liu, Huaishan organization: Qingdao National Laboratory for Marine Science and Technology |
| BookMark | eNqFkM9LwzAUx4NMcJuevQY81yVNsqZHGTqFgTL0HNLkVTq2ZCYpsv_edBMPXpZDwgvfH4_PBI2cd4DQLSX3NJ8ZZXNRlLyS95QxUl6g8d_PCI0JofNCklJcoUmMG0IYEYKPkVlrZ_0OO99FwDolcL1OnXfYt9gb0A43PqWsiNDFnd9BghBxoyNYnFUax76JCfbYwvEagjr3iXWfPDjjLYRrdNnqbYSb33eKPp4e3xfPxep1-bJ4WBWGUVEW1NTE1sIaW3NZS6G5rohsiGhLI4nhkNeXYI2kUAHLM6d1KStuBDeN0ZpN0d0pdx_8Vw8xqY3vg8uVihEuK5pb6qyanVQm-BgDtGofup0OB0WJGkiqgZsauKkjyewQ_xymS0dIKehue9733W3hcK5GLd_WJ98PS6-I2Q |
| CitedBy_id | crossref_primary_10_3390_s25030682 |
| Cites_doi | 10.1190/1.3063880 10.1190/1.3552706 10.1190/1.1438892 10.1109/TGRS.2021.3053399 10.1109/LGRS.2021.3131046 10.1007/s11001‐022‐09482‐0 10.1016/j.jappgeo.2013.03.007 10.1190/1.3043446 10.1190/GEO2018‐0668.1 10.1111/1365‐2478.13062 10.1093/gji/ggv072 10.1190/geo2012‐0232.1 10.1190/geo2014‐0116.1 10.1109/TGRS.2019.2928715 10.1093/gji/ggw230 10.1190/1.3627945 10.1038/nature14539 10.1109/TGRS.2017.2730228 10.1190/geo2011‐0117.1 10.1190/geo2014‐0227.1 10.1109/TGRS.2017.2698342 10.5555/1756006.1756025 10.1109/ACCESS.2019.2959238 10.1190/geo2013‐0080.1 10.1190/geo2014‐0234.1 10.1190/GEO2019‐0468.1 10.1190/geo2015‐0341.1 10.1190/1.1894168 10.1038/s41467‐019‐12405‐0 10.1190/1.1443920 10.1109/TIP.2017.2662206 10.1190/geo2015‐0264.1 |
| ContentType | Journal Article |
| Copyright | 2022 European Association of Geoscientists & Engineers. 2024 European Association of Geoscientists & Engineers. |
| Copyright_xml | – notice: 2022 European Association of Geoscientists & Engineers. – notice: 2024 European Association of Geoscientists & Engineers. |
| DBID | AAYXX CITATION 8FD F1W FR3 H96 KR7 L.G |
| DOI | 10.1111/1365-2478.13302 |
| DatabaseName | CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1365-2478 |
| EndPage | 1441 |
| ExternalDocumentID | 10_1111_1365_2478_13302 GPR13302 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong funderid: ZR2022MD067 – fundername: Central Universities funderid: 202262008 – fundername: National Key Research and Development Program funderid: 2022YFC2803503 – fundername: National Natural Science Foundation of China funderid: 42276055&42106070 |
| GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM DDYGU FZ0 AAYXX CITATION PALCI 8FD F1W FR3 H96 KR7 L.G |
| ID | FETCH-LOGICAL-c3152-1c90d95dcd948985a4a708b05f2c80c4e8028edc81e7e3c4e4192874c54cbcaa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913573900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-8025 |
| IngestDate | Tue Aug 12 13:40:59 EDT 2025 Tue Nov 18 22:18:55 EST 2025 Sat Nov 29 02:58:44 EST 2025 Sat Aug 24 00:57:14 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3152-1c90d95dcd948985a4a708b05f2c80c4e8028edc81e7e3c4e4192874c54cbcaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1629-5822 |
| PQID | 3048711529 |
| PQPubID | 1066348 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3048711529 crossref_primary_10_1111_1365_2478_13302 crossref_citationtrail_10_1111_1365_2478_13302 wiley_primary_10_1111_1365_2478_13302_GPR13302 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Houten |
| PublicationPlace_xml | – name: Houten |
| PublicationTitle | Geophysical Prospecting |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 69 2010; 11 2019; 7 2017; 26 2020; 85 2011 2015; 521 2019; 10 2016; 206 2015; 201 2019; 57 2008 2013; 93 2011; 76 2015; 80 2022; 43 2012; 77 2001; 20 2021; 59 1995; 60 2009; 74 2019; 84 2022 2013; 78 2017; 55 2018 1984 2014; 79 2016; 81 2022; 19 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 60 start-page: 1887 year: 1995 end-page: 1896 article-title: Lateral prediction for noise attenuation by t‐x and f‐x techniques publication-title: Geophysics – year: 1984 article-title: Random noise reduction – volume: 77 start-page: V61 issue: 2 year: 2012 end-page: V69 article-title: Random noise attenuation using f‐x regularized nonstationary autoregression publication-title: Geophysics – volume: 78 start-page: V79 issue: 3 year: 2013 end-page: V87 article-title: Noise reduction by vector median filtering publication-title: Geophysics – volume: 55 start-page: 4696 issue: 8 year: 2017 end-page: 4711 article-title: Empirical low‐rank approximation for seismic noise attenuation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 43 year: 2022 article-title: A new method for OBS relocation using direct water‐wave arrival times from a shooting line and accurate bathymetric data publication-title: Marine Geophysical Researches – volume: 57 start-page: 9709 issue: 12 year: 2019 end-page: 9723 article-title: Seismic noise attenuation using unsupervised sparse feature learning publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 59 start-page: 7968 issue: 9 year: 2021 end-page: 7981 article-title: Deep learning seismic random noise attenuation via improved residual convolutional neural network publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 80 start-page: V1 issue: 1 year: 2015 end-page: V11 article-title: Robust reduced‐rank filtering for erratic seismic noise attenuation publication-title: Geophysics – volume: 93 start-page: 60 year: 2013 end-page: 66 article-title: Noncausal f‐x‐y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data publication-title: Journal of Applied Geophysics – volume: 206 start-page: 1695 issue: 3 year: 2016 end-page: 1717 article-title: Simultaneous denoising and reconstruction of 5‐D seismic data via damped rank‐reduction method publication-title: Geophysical Journal International – volume: 69 start-page: 709 year: 2021 end-page: 726 article-title: A fully unsupervised and highly generalized deep learning approach for random noise suppression publication-title: Geophysical Prospecting – start-page: 4593 year: 2018 end-page: 4597 article-title: Seismic data denoising by deep‐residual networks – volume: 74 start-page: V17 issue: 1 year: 2009 end-page: V24 article-title: A 1D time‐varying median filter for seismic random, spike‐like noise elimination publication-title: Geophysics – volume: 7 start-page: 2169 year: 2019 end-page: 3536 article-title: Unsupervised seismic random noise attenuation based on deep convolutional neural network publication-title: IEEE Access: Practical Innovations, Open Solutions – volume: 81 start-page: V117 issue: 2 year: 2016 end-page: V124 article-title: Sparse time‐frequency representation for seismic noise reduction using low‐rank and sparse decomposition publication-title: Geophysics – volume: 201 start-page: 1180 issue: 2 year: 2015 end-page: 1192 article-title: Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform publication-title: Geophysical Journal International – volume: 26 start-page: 3142 issue: 7 year: 2017 end-page: 3155 article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Transactions on Image Processing – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 84 start-page: V333 issue: 6 year: 2019 end-page: V350 article-title: Deep learning for denoising publication-title: Geophysics – year: 2022 article-title: Denoising Pretraining for Semantic Segmentation – year: 2011 article-title: Ocean bottom seismic noise attenuation using local attribute matching filter – volume: 79 start-page: V81 issue: 3 year: 2014 end-page: V91 article-title: Random noise attenuation by f‐x empirical‐mode decomposition predictive filtering publication-title: Geophysics – volume: 85 start-page: V367 issue: 4 year: 2020 end-page: V376 article-title: Deep denoising autoencoder for seismic random noise attenuation publication-title: Geophysics – volume: 81 start-page: V261 issue: 4 year: 2016 end-page: V270 article-title: Damped multichannel singular spectrum analysis for 3D random noise attenuation publication-title: Geophysics – volume: 19 year: 2022 article-title: Unsupervised CNN based on self‐similarity for seismic data denoising publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 76 start-page: V25 issue: 3 year: 2011 end-page: V32 article-title: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis publication-title: Geophysics – volume: 80 start-page: WD1 year: 2015 end-page: WD9 article-title: Random noise attenuation using local signal‐and‐noise orthogonalization publication-title: Geophysics – year: 2008 article-title: F‐xy Cadzow noise suppression – volume: 11 start-page: 625 year: 2010 end-page: 660 article-title: Why does unsupervised pre‐training help deep learning? publication-title: Journal of Machine Learning Research – volume: 10 start-page: 1 year: 2019 end-page: 13 article-title: Obtaining free USArray data by multidimensional seismic reconstruction publication-title: Nature Communications – volume: 55 start-page: 6574 issue: 11 year: 2017 end-page: 6581 article-title: Seismic random noise attenuation using synchrosqueezed wavelet transform and low‐rank signal matrix approximation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 80 start-page: WD117 issue: 6 year: 2015 end-page: WD128 article-title: Signal and noise separation in prestack seismic data using velocity‐dependent seislet transform publication-title: Geophysics – volume: 20 start-page: 132 year: 2001 end-page: 144 article-title: Interpretive imaging of seismic data publication-title: The Leading Edge – ident: e_1_2_8_27_1 doi: 10.1190/1.3063880 – ident: e_1_2_8_23_1 doi: 10.1190/1.3552706 – ident: e_1_2_8_30_1 doi: 10.1190/1.1438892 – ident: e_1_2_8_29_1 doi: 10.1109/TGRS.2021.3053399 – ident: e_1_2_8_13_1 doi: 10.1109/LGRS.2021.3131046 – ident: e_1_2_8_19_1 doi: 10.1007/s11001‐022‐09482‐0 – ident: e_1_2_8_17_1 doi: 10.1016/j.jappgeo.2013.03.007 – ident: e_1_2_8_22_1 doi: 10.1190/1.3043446 – ident: e_1_2_8_31_1 doi: 10.1190/GEO2018‐0668.1 – ident: e_1_2_8_25_1 doi: 10.1111/1365‐2478.13062 – ident: e_1_2_8_28_1 doi: 10.1093/gji/ggv072 – ident: e_1_2_8_20_1 doi: 10.1190/geo2012‐0232.1 – ident: e_1_2_8_6_1 doi: 10.1190/geo2014‐0116.1 – ident: e_1_2_8_34_1 doi: 10.1109/TGRS.2019.2928715 – ident: e_1_2_8_4_1 – ident: e_1_2_8_10_1 doi: 10.1093/gji/ggw230 – ident: e_1_2_8_35_1 doi: 10.1190/1.3627945 – ident: e_1_2_8_15_1 doi: 10.1038/nature14539 – ident: e_1_2_8_3_1 doi: 10.1109/TGRS.2017.2730228 – ident: e_1_2_8_18_1 doi: 10.1190/geo2011‐0117.1 – ident: e_1_2_8_9_1 doi: 10.1190/geo2014‐0227.1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_11_1 doi: 10.1109/TGRS.2017.2698342 – ident: e_1_2_8_12_1 doi: 10.5555/1756006.1756025 – ident: e_1_2_8_33_1 doi: 10.1109/ACCESS.2019.2959238 – ident: e_1_2_8_7_1 doi: 10.1190/geo2013‐0080.1 – ident: e_1_2_8_21_1 doi: 10.1190/geo2014‐0234.1 – ident: e_1_2_8_24_1 doi: 10.1190/GEO2019‐0468.1 – ident: e_1_2_8_26_1 doi: 10.1190/geo2015‐0341.1 – ident: e_1_2_8_5_1 doi: 10.1190/1.1894168 – ident: e_1_2_8_8_1 doi: 10.1038/s41467‐019‐12405‐0 – ident: e_1_2_8_2_1 doi: 10.1190/1.1443920 – ident: e_1_2_8_32_1 doi: 10.1109/TIP.2017.2662206 – ident: e_1_2_8_14_1 doi: 10.1190/geo2015‐0264.1 |
| SSID | ssj0030554 ssj0017384 |
| Score | 2.3747637 |
| Snippet | Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1428 |
| SubjectTerms | Attenuation Coders computing aspects Data analysis Data processing Datasets Noise Noise reduction Ocean bottom Ocean bottom seismometers Ocean floor Random noise Seismic data Seismographs Seismometers signal processing Spectrum analysis Supervised learning Unsupervised learning |
| Title | Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13302 https://www.proquest.com/docview/3048711529 |
| Volume | 72 |
| WOSCitedRecordID | wos000913573900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2478 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017384 issn: 0016-8025 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS8MwGA-yKejBx1ScTsnBg5eOPtI1OYo6PYwxhpPdSpqkMHDtWDbB_958STenICJ4KQ3kUb53mi-_D6HrTiAiaYyvp4TKPBKS3MsA91b6QtI8ZkrYKgovvaTfp-MxG1TZhHAXxuFDrH-4gWZYew0KzjO9oeQuP4sktG22WQAnWQ-N9MY1VL8fdke99VFCEsFNTNcAeCuHyxwADG8YV2A_kNvzbb6vfuoz-NwMYa0P6h78w9cfov0qAMW3TmKO0JYqGmhvA5awgXYebbnf92MkhryQ5RQX5UQrDFCchYMGx2WOjefjBYZSZKaHVhM9LaeQXKMxuEaJTS-OtTFMCzXDUtkHTGTWwHy5KAFCU6r5CRp1H57vnryqLIMnIuPtvUAwX7JYCskIZTTmhCc-zfw4DwX1BVGGsFRJQQOVqMi04aCZJkTERGSC8-gU1YqyUGcI5x2SyygOMp8SwjqMKrO_CpPcouwHnDdRe8WEVFSY5VA64zVd7V2AjinQMbV0bKKb9YCZg-v4uWtrxdW00ludRsagJSZIDplZ2vLvt2nSx8HQvpz_dcAF2g1NhOSyJ1uotpgv1SXaFm-LiZ5fVWL8AWly7dM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iFPXgx1ScTs3Bg5dKP9I1OYo6J84hQ2W3kiYpDFwr6xT8730v7eYURAQvpYF88fK-krz8HiEnLU8FGpSvY5RJHOaz1EkQ91a7SvM0FEbZLApP3ajX44OBmH8LU-JDzA7cUDKsvkYBxwPpOSkvA7RYxM9gn4V4kjUGzARcXrvstx-7s7uEKMCnmGUB8a1KYGYPcXj9sEL7weCeb_19NVSf3ue8D2uNUHvjP6a_SdYrF5SelzyzRRZMVidrc8CEdbJ8bRP-vm8T1ZeZzkc0y4eFoQjGmZXg4DRPKdg-mVFMRgY1CjMsRvkIw2sKisZRU6glaQGqaWJeqDb2gx3BGFS-TnIE0dRmvEMe21cPFx2nSszgqADsveMp4WoRaqUF44KHksnI5Ykbpr7irmIGKMuNVtwzkQmgjFfNPGIqZCpRUga7ZDHLM7NHaNpiqQ5CL3E5Y6IluIEdlh-lFmffk7JBzqarEKsKtRyTZzzH090L0jFGOsaWjg1yOmvwUgJ2_Fy1OV3WuJLcIg5ApUXgJvsChrYL-Fs38fV93_7s_7XBMVnpPNx14-5N7_aArPrgL5WxlE2yOBm_mkOypN4mw2J8VPH0B8CJ8cM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NZUPwwFgZAtYNP_Cwl6B8OI39iIDCtKpCFZ36Fjn2Raq0JlXTIvHf43PSrkNCCImXKJbsc3Tn-3B8_h3AWTfQkbHG10ONmcdDnnsZ4d4aXxuRxxK1q6Lwp58MBmI8lpt3YWp8iPUPN9IMZ69JwXFm8g0trxO0eCLO7T6L8CS3OJWSacHW1bA36q_PEpKIrmLWDcK3qoGZA8LhDeMG7YeSe57R-99R_Ys-N2NY54R6n9_j8_dhrwlB2UW9Zr7AByzasLsBTNiGTzeu4O_jAeihKkw5ZUU5qZARGGdRg4OzMmfW96mCUTEy26PCSTUtp5ReUzFyjobZXopV1jQtcMYMugcRsnMwtVyUBKJpcP4VRr3r-8tbrynM4OnI-nsv0NI3MjbaSC6kiBVXiS8yP85DLXzN0XJWoNEiwAQj26ajZpFwHXOdaaWiQ2gVZYFHwPIuz00UB5kvOJddKdDusMIkdzj7gVLHcL6SQqob1HIqnvE3Xe1eiI8p8TF1fDyGn-sBsxqw4-WunZVY00ZzqzSyJi2xYXIo7dROgK-RSW_uhu7l5K0DTmH77qqX9n8Nfn-DndCGS3UqZQdai_kSv8NH_bCYVPMfzZJ-Al2h8T4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+noise+attenuation+of+ocean+bottom+seismometers+based+on+a+substep+deep+denoising+autoencoder&rft.jtitle=Geophysical+Prospecting&rft.au=Lin%2C+Haoran&rft.au=Xu%2C+Jian&rft.au=Xing%2C+Lei&rft.au=Li%2C+Qianqian&rft.date=2024-05-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=72&rft.issue=4&rft.spage=1428&rft.epage=1441&rft_id=info:doi/10.1111%2F1365-2478.13302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2478_13302 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |