Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder

Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical Prospecting Vol. 72; no. 4; pp. 1428 - 1441
Main Authors: Lin, Haoran, Xu, Jian, Xing, Lei, Li, Qianqian, Liu, Huaishan
Format: Journal Article
Language:English
Published: Houten Wiley Subscription Services, Inc 01.05.2024
Subjects:
ISSN:0016-8025, 1365-2478
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the t−x$t-x$ domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the f−x$f-x$ deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision.
AbstractList Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the t−x$t-x$ domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the f−x$f-x$ deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision.
Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects subsequent imaging. Hence, random noise attenuation is one of the most essential steps in ocean bottom seismometer data processing. In this paper, a novel approach is proposed to attenuate the marine seismic random noise of ocean bottom seismometers based on a six‐dense‐layer denoising autoencoder. We input the domain data into the denoising autoencoder, the encoder compresses the signal and noise and extracts the main features and the decoder finally reconstructs the denoised data with the same dimension as the input. In this approach, because few raw labelled examples are available, we first constructed the pretraining, training and test data sets by patch processing. Then, we pretrained the encoder based on clean synthetic seismic data through unsupervised learning and pretrained the decoder based on noisy synthetic seismic data through supervised learning. Next, the pretrained model was fine‐tuned with the encoder–decoder on a raw seismic data set in an unsupervised manner. Finally, we used the model to attenuate the random noise in raw ocean bottom seismometer data for testing. Synthetic and raw examples are used to compare the deconvolution, multichannel singular spectrum analysis, deep denoising autoencoder and substep deep denoising autoencoder approaches. Experimental tests demonstrate that the proposed method has higher processing efficiency and precision.
Author Lin, Haoran
Liu, Huaishan
Li, Qianqian
Xu, Jian
Xing, Lei
Author_xml – sequence: 1
  givenname: Haoran
  surname: Lin
  fullname: Lin, Haoran
  organization: Qingdao National Laboratory for Marine Science and Technology
– sequence: 2
  givenname: Jian
  surname: Xu
  fullname: Xu, Jian
  organization: ZheJiang HuaDong Construction Engineering Co., Ltd
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-1629-5822
  surname: Xing
  fullname: Xing, Lei
  email: xingleiouc@ouc.edu.cn
  organization: Qingdao National Laboratory for Marine Science and Technology
– sequence: 4
  givenname: Qianqian
  surname: Li
  fullname: Li, Qianqian
  organization: Ocean University of China
– sequence: 5
  givenname: Huaishan
  surname: Liu
  fullname: Liu, Huaishan
  organization: Qingdao National Laboratory for Marine Science and Technology
BookMark eNqFkM9LwzAUx4NMcJuevQY81yVNsqZHGTqFgTL0HNLkVTq2ZCYpsv_edBMPXpZDwgvfH4_PBI2cd4DQLSX3NJ8ZZXNRlLyS95QxUl6g8d_PCI0JofNCklJcoUmMG0IYEYKPkVlrZ_0OO99FwDolcL1OnXfYt9gb0A43PqWsiNDFnd9BghBxoyNYnFUax76JCfbYwvEagjr3iXWfPDjjLYRrdNnqbYSb33eKPp4e3xfPxep1-bJ4WBWGUVEW1NTE1sIaW3NZS6G5rohsiGhLI4nhkNeXYI2kUAHLM6d1KStuBDeN0ZpN0d0pdx_8Vw8xqY3vg8uVihEuK5pb6qyanVQm-BgDtGofup0OB0WJGkiqgZsauKkjyewQ_xymS0dIKehue9733W3hcK5GLd_WJ98PS6-I2Q
CitedBy_id crossref_primary_10_3390_s25030682
Cites_doi 10.1190/1.3063880
10.1190/1.3552706
10.1190/1.1438892
10.1109/TGRS.2021.3053399
10.1109/LGRS.2021.3131046
10.1007/s11001‐022‐09482‐0
10.1016/j.jappgeo.2013.03.007
10.1190/1.3043446
10.1190/GEO2018‐0668.1
10.1111/1365‐2478.13062
10.1093/gji/ggv072
10.1190/geo2012‐0232.1
10.1190/geo2014‐0116.1
10.1109/TGRS.2019.2928715
10.1093/gji/ggw230
10.1190/1.3627945
10.1038/nature14539
10.1109/TGRS.2017.2730228
10.1190/geo2011‐0117.1
10.1190/geo2014‐0227.1
10.1109/TGRS.2017.2698342
10.5555/1756006.1756025
10.1109/ACCESS.2019.2959238
10.1190/geo2013‐0080.1
10.1190/geo2014‐0234.1
10.1190/GEO2019‐0468.1
10.1190/geo2015‐0341.1
10.1190/1.1894168
10.1038/s41467‐019‐12405‐0
10.1190/1.1443920
10.1109/TIP.2017.2662206
10.1190/geo2015‐0264.1
ContentType Journal Article
Copyright 2022 European Association of Geoscientists & Engineers.
2024 European Association of Geoscientists & Engineers.
Copyright_xml – notice: 2022 European Association of Geoscientists & Engineers.
– notice: 2024 European Association of Geoscientists & Engineers.
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.13302
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 1441
ExternalDocumentID 10_1111_1365_2478_13302
GPR13302
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong
  funderid: ZR2022MD067
– fundername: Central Universities
  funderid: 202262008
– fundername: National Key Research and Development Program
  funderid: 2022YFC2803503
– fundername: National Natural Science Foundation of China
  funderid: 42276055&42106070
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c3152-1c90d95dcd948985a4a708b05f2c80c4e8028edc81e7e3c4e4192874c54cbcaa3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913573900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Tue Aug 12 13:40:59 EDT 2025
Tue Nov 18 22:18:55 EST 2025
Sat Nov 29 02:58:44 EST 2025
Sat Aug 24 00:57:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3152-1c90d95dcd948985a4a708b05f2c80c4e8028edc81e7e3c4e4192874c54cbcaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1629-5822
PQID 3048711529
PQPubID 1066348
PageCount 14
ParticipantIDs proquest_journals_3048711529
crossref_primary_10_1111_1365_2478_13302
crossref_citationtrail_10_1111_1365_2478_13302
wiley_primary_10_1111_1365_2478_13302_GPR13302
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2010; 11
2019; 7
2017; 26
2020; 85
2011
2015; 521
2019; 10
2016; 206
2015; 201
2019; 57
2008
2013; 93
2011; 76
2015; 80
2022; 43
2012; 77
2001; 20
2021; 59
1995; 60
2009; 74
2019; 84
2022
2013; 78
2017; 55
2018
1984
2014; 79
2016; 81
2022; 19
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 60
  start-page: 1887
  year: 1995
  end-page: 1896
  article-title: Lateral prediction for noise attenuation by t‐x and f‐x techniques
  publication-title: Geophysics
– year: 1984
  article-title: Random noise reduction
– volume: 77
  start-page: V61
  issue: 2
  year: 2012
  end-page: V69
  article-title: Random noise attenuation using f‐x regularized nonstationary autoregression
  publication-title: Geophysics
– volume: 78
  start-page: V79
  issue: 3
  year: 2013
  end-page: V87
  article-title: Noise reduction by vector median filtering
  publication-title: Geophysics
– volume: 55
  start-page: 4696
  issue: 8
  year: 2017
  end-page: 4711
  article-title: Empirical low‐rank approximation for seismic noise attenuation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 43
  year: 2022
  article-title: A new method for OBS relocation using direct water‐wave arrival times from a shooting line and accurate bathymetric data
  publication-title: Marine Geophysical Researches
– volume: 57
  start-page: 9709
  issue: 12
  year: 2019
  end-page: 9723
  article-title: Seismic noise attenuation using unsupervised sparse feature learning
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 59
  start-page: 7968
  issue: 9
  year: 2021
  end-page: 7981
  article-title: Deep learning seismic random noise attenuation via improved residual convolutional neural network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 80
  start-page: V1
  issue: 1
  year: 2015
  end-page: V11
  article-title: Robust reduced‐rank filtering for erratic seismic noise attenuation
  publication-title: Geophysics
– volume: 93
  start-page: 60
  year: 2013
  end-page: 66
  article-title: Noncausal f‐x‐y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data
  publication-title: Journal of Applied Geophysics
– volume: 206
  start-page: 1695
  issue: 3
  year: 2016
  end-page: 1717
  article-title: Simultaneous denoising and reconstruction of 5‐D seismic data via damped rank‐reduction method
  publication-title: Geophysical Journal International
– volume: 69
  start-page: 709
  year: 2021
  end-page: 726
  article-title: A fully unsupervised and highly generalized deep learning approach for random noise suppression
  publication-title: Geophysical Prospecting
– start-page: 4593
  year: 2018
  end-page: 4597
  article-title: Seismic data denoising by deep‐residual networks
– volume: 74
  start-page: V17
  issue: 1
  year: 2009
  end-page: V24
  article-title: A 1D time‐varying median filter for seismic random, spike‐like noise elimination
  publication-title: Geophysics
– volume: 7
  start-page: 2169
  year: 2019
  end-page: 3536
  article-title: Unsupervised seismic random noise attenuation based on deep convolutional neural network
  publication-title: IEEE Access: Practical Innovations, Open Solutions
– volume: 81
  start-page: V117
  issue: 2
  year: 2016
  end-page: V124
  article-title: Sparse time‐frequency representation for seismic noise reduction using low‐rank and sparse decomposition
  publication-title: Geophysics
– volume: 201
  start-page: 1180
  issue: 2
  year: 2015
  end-page: 1192
  article-title: Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform
  publication-title: Geophysical Journal International
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 84
  start-page: V333
  issue: 6
  year: 2019
  end-page: V350
  article-title: Deep learning for denoising
  publication-title: Geophysics
– year: 2022
  article-title: Denoising Pretraining for Semantic Segmentation
– year: 2011
  article-title: Ocean bottom seismic noise attenuation using local attribute matching filter
– volume: 79
  start-page: V81
  issue: 3
  year: 2014
  end-page: V91
  article-title: Random noise attenuation by f‐x empirical‐mode decomposition predictive filtering
  publication-title: Geophysics
– volume: 85
  start-page: V367
  issue: 4
  year: 2020
  end-page: V376
  article-title: Deep denoising autoencoder for seismic random noise attenuation
  publication-title: Geophysics
– volume: 81
  start-page: V261
  issue: 4
  year: 2016
  end-page: V270
  article-title: Damped multichannel singular spectrum analysis for 3D random noise attenuation
  publication-title: Geophysics
– volume: 19
  year: 2022
  article-title: Unsupervised CNN based on self‐similarity for seismic data denoising
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 76
  start-page: V25
  issue: 3
  year: 2011
  end-page: V32
  article-title: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis
  publication-title: Geophysics
– volume: 80
  start-page: WD1
  year: 2015
  end-page: WD9
  article-title: Random noise attenuation using local signal‐and‐noise orthogonalization
  publication-title: Geophysics
– year: 2008
  article-title: F‐xy Cadzow noise suppression
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  article-title: Why does unsupervised pre‐training help deep learning?
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Obtaining free USArray data by multidimensional seismic reconstruction
  publication-title: Nature Communications
– volume: 55
  start-page: 6574
  issue: 11
  year: 2017
  end-page: 6581
  article-title: Seismic random noise attenuation using synchrosqueezed wavelet transform and low‐rank signal matrix approximation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 80
  start-page: WD117
  issue: 6
  year: 2015
  end-page: WD128
  article-title: Signal and noise separation in prestack seismic data using velocity‐dependent seislet transform
  publication-title: Geophysics
– volume: 20
  start-page: 132
  year: 2001
  end-page: 144
  article-title: Interpretive imaging of seismic data
  publication-title: The Leading Edge
– ident: e_1_2_8_27_1
  doi: 10.1190/1.3063880
– ident: e_1_2_8_23_1
  doi: 10.1190/1.3552706
– ident: e_1_2_8_30_1
  doi: 10.1190/1.1438892
– ident: e_1_2_8_29_1
  doi: 10.1109/TGRS.2021.3053399
– ident: e_1_2_8_13_1
  doi: 10.1109/LGRS.2021.3131046
– ident: e_1_2_8_19_1
  doi: 10.1007/s11001‐022‐09482‐0
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jappgeo.2013.03.007
– ident: e_1_2_8_22_1
  doi: 10.1190/1.3043446
– ident: e_1_2_8_31_1
  doi: 10.1190/GEO2018‐0668.1
– ident: e_1_2_8_25_1
  doi: 10.1111/1365‐2478.13062
– ident: e_1_2_8_28_1
  doi: 10.1093/gji/ggv072
– ident: e_1_2_8_20_1
  doi: 10.1190/geo2012‐0232.1
– ident: e_1_2_8_6_1
  doi: 10.1190/geo2014‐0116.1
– ident: e_1_2_8_34_1
  doi: 10.1109/TGRS.2019.2928715
– ident: e_1_2_8_4_1
– ident: e_1_2_8_10_1
  doi: 10.1093/gji/ggw230
– ident: e_1_2_8_35_1
  doi: 10.1190/1.3627945
– ident: e_1_2_8_15_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_3_1
  doi: 10.1109/TGRS.2017.2730228
– ident: e_1_2_8_18_1
  doi: 10.1190/geo2011‐0117.1
– ident: e_1_2_8_9_1
  doi: 10.1190/geo2014‐0227.1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_11_1
  doi: 10.1109/TGRS.2017.2698342
– ident: e_1_2_8_12_1
  doi: 10.5555/1756006.1756025
– ident: e_1_2_8_33_1
  doi: 10.1109/ACCESS.2019.2959238
– ident: e_1_2_8_7_1
  doi: 10.1190/geo2013‐0080.1
– ident: e_1_2_8_21_1
  doi: 10.1190/geo2014‐0234.1
– ident: e_1_2_8_24_1
  doi: 10.1190/GEO2019‐0468.1
– ident: e_1_2_8_26_1
  doi: 10.1190/geo2015‐0341.1
– ident: e_1_2_8_5_1
  doi: 10.1190/1.1894168
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467‐019‐12405‐0
– ident: e_1_2_8_2_1
  doi: 10.1190/1.1443920
– ident: e_1_2_8_32_1
  doi: 10.1109/TIP.2017.2662206
– ident: e_1_2_8_14_1
  doi: 10.1190/geo2015‐0264.1
SSID ssj0030554
ssj0017384
Score 2.3747637
Snippet Ocean bottom seismometer data usually contain a large amount of random noise, which seriously reduces the signal‐to‐noise ratio of the data and affects...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1428
SubjectTerms Attenuation
Coders
computing aspects
Data analysis
Data processing
Datasets
Noise
Noise reduction
Ocean bottom
Ocean bottom seismometers
Ocean floor
Random noise
Seismic data
Seismographs
Seismometers
signal processing
Spectrum analysis
Supervised learning
Unsupervised learning
Title Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13302
https://www.proquest.com/docview/3048711529
Volume 72
WOSCitedRecordID wos000913573900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS8MwGA-yKejBx1ScTsnBg5eOPtI1OYo6PYwxhpPdSpqkMHDtWDbB_958STenICJ4KQ3kUb53mi-_D6HrTiAiaYyvp4TKPBKS3MsA91b6QtI8ZkrYKgovvaTfp-MxG1TZhHAXxuFDrH-4gWZYew0KzjO9oeQuP4sktG22WQAnWQ-N9MY1VL8fdke99VFCEsFNTNcAeCuHyxwADG8YV2A_kNvzbb6vfuoz-NwMYa0P6h78w9cfov0qAMW3TmKO0JYqGmhvA5awgXYebbnf92MkhryQ5RQX5UQrDFCchYMGx2WOjefjBYZSZKaHVhM9LaeQXKMxuEaJTS-OtTFMCzXDUtkHTGTWwHy5KAFCU6r5CRp1H57vnryqLIMnIuPtvUAwX7JYCskIZTTmhCc-zfw4DwX1BVGGsFRJQQOVqMi04aCZJkTERGSC8-gU1YqyUGcI5x2SyygOMp8SwjqMKrO_CpPcouwHnDdRe8WEVFSY5VA64zVd7V2AjinQMbV0bKKb9YCZg-v4uWtrxdW00ludRsagJSZIDplZ2vLvt2nSx8HQvpz_dcAF2g1NhOSyJ1uotpgv1SXaFm-LiZ5fVWL8AWly7dM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iFPXgx1ScTs3Bg5dKP9I1OYo6J84hQ2W3kiYpDFwr6xT8730v7eYURAQvpYF88fK-krz8HiEnLU8FGpSvY5RJHOaz1EkQ91a7SvM0FEbZLApP3ajX44OBmH8LU-JDzA7cUDKsvkYBxwPpOSkvA7RYxM9gn4V4kjUGzARcXrvstx-7s7uEKMCnmGUB8a1KYGYPcXj9sEL7weCeb_19NVSf3ue8D2uNUHvjP6a_SdYrF5SelzyzRRZMVidrc8CEdbJ8bRP-vm8T1ZeZzkc0y4eFoQjGmZXg4DRPKdg-mVFMRgY1CjMsRvkIw2sKisZRU6glaQGqaWJeqDb2gx3BGFS-TnIE0dRmvEMe21cPFx2nSszgqADsveMp4WoRaqUF44KHksnI5Ykbpr7irmIGKMuNVtwzkQmgjFfNPGIqZCpRUga7ZDHLM7NHaNpiqQ5CL3E5Y6IluIEdlh-lFmffk7JBzqarEKsKtRyTZzzH090L0jFGOsaWjg1yOmvwUgJ2_Fy1OV3WuJLcIg5ApUXgJvsChrYL-Fs38fV93_7s_7XBMVnpPNx14-5N7_aArPrgL5WxlE2yOBm_mkOypN4mw2J8VPH0B8CJ8cM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NZUPwwFgZAtYNP_Cwl6B8OI39iIDCtKpCFZ36Fjn2Raq0JlXTIvHf43PSrkNCCImXKJbsc3Tn-3B8_h3AWTfQkbHG10ONmcdDnnsZ4d4aXxuRxxK1q6Lwp58MBmI8lpt3YWp8iPUPN9IMZ69JwXFm8g0trxO0eCLO7T6L8CS3OJWSacHW1bA36q_PEpKIrmLWDcK3qoGZA8LhDeMG7YeSe57R-99R_Ys-N2NY54R6n9_j8_dhrwlB2UW9Zr7AByzasLsBTNiGTzeu4O_jAeihKkw5ZUU5qZARGGdRg4OzMmfW96mCUTEy26PCSTUtp5ReUzFyjobZXopV1jQtcMYMugcRsnMwtVyUBKJpcP4VRr3r-8tbrynM4OnI-nsv0NI3MjbaSC6kiBVXiS8yP85DLXzN0XJWoNEiwAQj26ajZpFwHXOdaaWiQ2gVZYFHwPIuz00UB5kvOJddKdDusMIkdzj7gVLHcL6SQqob1HIqnvE3Xe1eiI8p8TF1fDyGn-sBsxqw4-WunZVY00ZzqzSyJi2xYXIo7dROgK-RSW_uhu7l5K0DTmH77qqX9n8Nfn-DndCGS3UqZQdai_kSv8NH_bCYVPMfzZJ-Al2h8T4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+noise+attenuation+of+ocean+bottom+seismometers+based+on+a+substep+deep+denoising+autoencoder&rft.jtitle=Geophysical+Prospecting&rft.au=Lin%2C+Haoran&rft.au=Xu%2C+Jian&rft.au=Xing%2C+Lei&rft.au=Li%2C+Qianqian&rft.date=2024-05-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=72&rft.issue=4&rft.spage=1428&rft.epage=1441&rft_id=info:doi/10.1111%2F1365-2478.13302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2478_13302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon