Quantum optimization algorithms: Energetic implications

Summary Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noise...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 36; no. 16
Main Authors: Hong Enriquez, Rolando P., Badia, Rosa M., Chapman, Barbara, Bresniker, Kirk, Pakin, Scott, Mishra, Alok, Bruel, Pedro, Dhakal, Aditya, Rattihalli, Gourav, Hogade, Ninad, Frachtenberg, Eitan, Milojicic, Dejan
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 25.07.2024
Wiley Blackwell (John Wiley & Sons)
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noiseless qubits. In the near future, QC applications will need to rely on noisy quantum devices that offload part of their work to classical devices. One way to achieve this is by using parameterized quantum circuits in optimization or even in machine learning tasks. The energy requirements of quantum algorithms have not yet been studied extensively. In this article, we explore several optimization algorithms using both theoretical insights and numerical experiments to understand their impact on energy consumption. Specifically, we highlight why and how algorithms like quantum natural gradient descent, simultaneous perturbation stochastic approximations or circuit learning methods, are at least 2×$$ 2\times $$ to 4×$$ 4\times $$ more energy efficient than their classical counterparts; why feedback‐based quantum optimization is energy‐inefficient; and how techniques like Rosalin can improve the energy efficiency of other algorithms by a factor of ≥$$ \ge $$20×$$ \times $$. Finally, we use the NchooseK high‐level programming model to run optimization problems on both gate‐based quantum computers and quantum annealers. Empirical data indicate that these optimization problems run faster, have better success rates, and consume less energy on quantum annealers than on their gate‐based counterparts.
AbstractList Summary Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noiseless qubits. In the near future, QC applications will need to rely on noisy quantum devices that offload part of their work to classical devices. One way to achieve this is by using parameterized quantum circuits in optimization or even in machine learning tasks. The energy requirements of quantum algorithms have not yet been studied extensively. In this article, we explore several optimization algorithms using both theoretical insights and numerical experiments to understand their impact on energy consumption. Specifically, we highlight why and how algorithms like quantum natural gradient descent, simultaneous perturbation stochastic approximations or circuit learning methods, are at least 2×$$ 2\times $$ to 4×$$ 4\times $$ more energy efficient than their classical counterparts; why feedback‐based quantum optimization is energy‐inefficient; and how techniques like Rosalin can improve the energy efficiency of other algorithms by a factor of ≥$$ \ge $$20×$$ \times $$. Finally, we use the NchooseK high‐level programming model to run optimization problems on both gate‐based quantum computers and quantum annealers. Empirical data indicate that these optimization problems run faster, have better success rates, and consume less energy on quantum annealers than on their gate‐based counterparts.
Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noiseless qubits. In the near future, QC applications will need to rely on noisy quantum devices that offload part of their work to classical devices. One way to achieve this is by using parameterized quantum circuits in optimization or even in machine learning tasks. The energy requirements of quantum algorithms have not yet been studied extensively. In this article, we explore several optimization algorithms using both theoretical insights and numerical experiments to understand their impact on energy consumption. Specifically, we highlight why and how algorithms like quantum natural gradient descent, simultaneous perturbation stochastic approximations or circuit learning methods, are at least 2×$$ 2\times $$ to 4×$$ 4\times $$ more energy efficient than their classical counterparts; why feedback‐based quantum optimization is energy‐inefficient; and how techniques like Rosalin can improve the energy efficiency of other algorithms by a factor of ≥$$ \ge $$20×$$ \times $$. Finally, we use the NchooseK high‐level programming model to run optimization problems on both gate‐based quantum computers and quantum annealers. Empirical data indicate that these optimization problems run faster, have better success rates, and consume less energy on quantum annealers than on their gate‐based counterparts.
Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noiseless qubits. In the near future, QC applications will need to rely on noisy quantum devices that offload part of their work to classical devices. One way to achieve this is by using parameterized quantum circuits in optimization or even in machine learning tasks. The energy requirements of quantum algorithms have not yet been studied extensively. In this article, we explore several optimization algorithms using both theoretical insights and numerical experiments to understand their impact on energy consumption. Specifically, we highlight why and how algorithms like quantum natural gradient descent, simultaneous perturbation stochastic approximations or circuit learning methods, are at least to more energy efficient than their classical counterparts; why feedback‐based quantum optimization is energy‐inefficient; and how techniques like Rosalin can improve the energy efficiency of other algorithms by a factor of 20. Finally, we use the NchooseK high‐level programming model to run optimization problems on both gate‐based quantum computers and quantum annealers. Empirical data indicate that these optimization problems run faster, have better success rates, and consume less energy on quantum annealers than on their gate‐based counterparts.
Summary Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing. However, such quantum supremacy claims are difficult to achieve in practice because of the technical challenges of realizing noiseless qubits. In the near future, QC applications will need to rely on noisy quantum devices that offload part of their work to classical devices. One way to achieve this is by using parameterized quantum circuits in optimization or even in machine learning tasks. The energy requirements of quantum algorithms have not yet been studied extensively. In this article, we explore several optimization algorithms using both theoretical insights and numerical experiments to understand their impact on energy consumption. Specifically, we highlight why and how algorithms like quantum natural gradient descent, simultaneous perturbation stochastic approximations or circuit learning methods, are at least to more energy efficient than their classical counterparts; why feedback‐based quantum optimization is energy‐inefficient; and how techniques like Rosalin can improve the energy efficiency of other algorithms by a factor of 20. Finally, we use the NchooseK high‐level programming model to run optimization problems on both gate‐based quantum computers and quantum annealers. Empirical data indicate that these optimization problems run faster, have better success rates, and consume less energy on quantum annealers than on their gate‐based counterparts.
Author Bresniker, Kirk
Milojicic, Dejan
Pakin, Scott
Chapman, Barbara
Hogade, Ninad
Dhakal, Aditya
Rattihalli, Gourav
Mishra, Alok
Bruel, Pedro
Hong Enriquez, Rolando P.
Badia, Rosa M.
Frachtenberg, Eitan
Author_xml – sequence: 1
  givenname: Rolando P.
  orcidid: 0009-0008-5652-4408
  surname: Hong Enriquez
  fullname: Hong Enriquez, Rolando P.
  email: rhong@hpe.com
  organization: Hewlett Packard Labs
– sequence: 2
  givenname: Rosa M.
  surname: Badia
  fullname: Badia, Rosa M.
  organization: Barcelona Supercomputing Center
– sequence: 3
  givenname: Barbara
  surname: Chapman
  fullname: Chapman, Barbara
  organization: Hewlett Packard Enterprise
– sequence: 4
  givenname: Kirk
  surname: Bresniker
  fullname: Bresniker, Kirk
  organization: Hewlett Packard Labs
– sequence: 5
  givenname: Scott
  surname: Pakin
  fullname: Pakin, Scott
  organization: Los Alamos National Laboratory
– sequence: 6
  givenname: Alok
  surname: Mishra
  fullname: Mishra, Alok
  organization: Hewlett Packard Labs
– sequence: 7
  givenname: Pedro
  surname: Bruel
  fullname: Bruel, Pedro
  organization: Hewlett Packard Labs
– sequence: 8
  givenname: Aditya
  surname: Dhakal
  fullname: Dhakal, Aditya
  organization: Hewlett Packard Labs
– sequence: 9
  givenname: Gourav
  surname: Rattihalli
  fullname: Rattihalli, Gourav
  organization: Hewlett Packard Labs
– sequence: 10
  givenname: Ninad
  surname: Hogade
  fullname: Hogade, Ninad
  organization: Hewlett Packard Labs
– sequence: 11
  givenname: Eitan
  surname: Frachtenberg
  fullname: Frachtenberg, Eitan
  organization: Hewlett Packard Labs
– sequence: 12
  givenname: Dejan
  surname: Milojicic
  fullname: Milojicic, Dejan
  organization: Hewlett Packard Labs
BackLink https://www.osti.gov/biblio/2340172$$D View this record in Osti.gov
BookMark eNp10F1LwzAUBuAgE9ym4E8oeuNN50nTpo13MuoHDFTQ65Bm6ZbRJjVJkfnr7VbxTjhwzsXDy-GdoYmxRiF0iWGBAZJb2alFgRN8gqY4I0kMlKSTvzuhZ2jm_Q4AYyB4ivK3XpjQt5Htgm71twjamkg0G-t02Lb-LiqNchsVtIx02zVaHoU_R6e1aLy6-N1z9PFQvi-f4tXL4_PyfhVLgjMc52xd0woqKoHlslYF0BRYQfMCp0xKQVPBFBWKVWKYAhRjskjXjFa0qgQlZI6uxlzrg-Ze6qDkVlpjlAw8ISngPBnQ9Yg6Zz975QPf2d6Z4S9OIMcUiiyDQd2MSjrrvVM175xuhdtzDPzQHR-644fuBhqP9Es3av-v48vX8uh_ALUccKU
Cites_doi 10.1103/PhysRevA.76.042319
10.1080/00107514.2019.1667078
10.1103/PhysRevLett.129.250502
10.22331/q‐2020‐05‐11‐263
10.1145/3592622
10.1109/9.119632
10.1038/d41586‐020‐03237‐w
10.1557/mrs.2013.20
10.1201/9781003358817-7
10.1063/5.0082975
10.22331/q‐2021‐10‐20‐567
10.1063/PT.3.4499
10.22331/q‐2022‐05‐09‐707
10.1103/PhysRevResearch.4.023017
10.1103/PhysRevA.101.032308
10.1155/2013/967529
10.22331/q‐2019‐12‐09‐214
10.1103/PhysRevA.99.032331
10.22331/q‐2020‐05‐25‐269
10.1088/2058‐9565/ab4eb5
10.1088/1751‐8113/47/26/265206
10.1109/QCS54837.2021.00016
10.1007/978-3-540-78800-3_24
10.1109/QCE49297.2020.00045
10.22331/q‐2022‐03‐30‐677
10.22331/q‐2021‐01‐28‐391
10.22331/q‐2018‐08‐06‐79
10.1016/S0301‐0104(01)00318‐4
10.1088/2058‐9565/acae3e
10.22331/q‐2024‐03‐07‐1275
10.1214/aoms/1177729392
10.1162/089976698300017746
10.22331/q‐2021‐02‐04‐392
10.1038/s41563‐022‐01304‐3
10.1088/2058‐9565/aab822
10.1109/TSUSC.2022.3190242
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1002/cpe.8121
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 2340172
10_1002_cpe_8121
CPE8121
Genre article
GrantInformation_xml – fundername: Laboratory Directed Research and Development
– fundername: National Nuclear Security Administration of U.S. Department of Energy
  funderid: 89233218CNA000001
– fundername: Los Alamos National Laboratory
  funderid: 20210397ER
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
AAHHS
ABHUG
ACCFJ
ACXME
ADAWD
ADDAD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
OTOTI
RWI
WRC
ID FETCH-LOGICAL-c3151-79df6b0b6c097cfe8064098678149cca64a9e6ae9ba9ba80e99c84d96b6bba633
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207122800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Mon Apr 29 05:36:47 EDT 2024
Sun Nov 09 07:29:56 EST 2025
Sat Nov 29 03:49:55 EST 2025
Wed Aug 20 07:26:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3151-79df6b0b6c097cfe8064098678149cca64a9e6ae9ba9ba80e99c84d96b6bba633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0009-0008-5652-4408
0009000856524408
OpenAccessLink https://www.osti.gov/servlets/purl/2367506
PQID 3071608550
PQPubID 2045170
PageCount 22
ParticipantIDs osti_scitechconnect_2340172
proquest_journals_3071608550
crossref_primary_10_1002_cpe_8121
wiley_primary_10_1002_cpe_8121_CPE8121
PublicationCentury 2000
PublicationDate 25 July 2024
PublicationDateYYYYMMDD 2024-07-25
PublicationDate_xml – month: 07
  year: 2024
  text: 25 July 2024
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United Kingdom
PublicationTitle Concurrency and computation
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2001; 267
2022; 132
2021; 5
2019; 4
2019; 3
2008; 4963
2023; 4
2019; 99
2023; 8
2008
2014; 47
1994
2020; 101
2020; 587
2022; 21
1992; 37
2007; 76
2013; 18
1952; 23
2018; 3
2020; 4
2019; 60
2018; 2
2013; 38
2022
2022; 4
2020; 73
2021
2022; 6
2020
2022; 7
1998; 10
2022; 129
e_1_2_10_23_1
Hagberg AA (e_1_2_10_45_1) 2008
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_42_1
Powell MJD (e_1_2_10_47_1) 1994
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
D‐Wave Systems, Inc. (e_1_2_10_44_1) 2022
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Wilson E (e_1_2_10_43_1) 2022
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – volume: 38
  start-page: 134
  issue: 2
  year: 2013
  end-page: 138
  article-title: Diamond NV Centers for quantum computing and quantum networks
  publication-title: MRS Bull
– volume: 4
  year: 2022
  article-title: Quantum analytic descent
  publication-title: Phys Rev Res
– volume: 5
  start-page: 391
  year: 2021
  article-title: Structure optimization for parameterized quantum circuits
  publication-title: Quantum
– volume: 47
  year: 2014
  article-title: Stability of the Trotter‐Suzuki decomposition
  publication-title: J Phys A Math Theor
– volume: 10
  start-page: 251
  issue: 2
  year: 1998
  end-page: 276
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Comput
– volume: 6
  start-page: 707
  year: 2022
  article-title: Re‐examining the quantum volume test: ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations
  publication-title: Quantum
– volume: 8
  year: 2023
  article-title: Here comes the SU(N) multivariate quantum gates and gradients
  publication-title: Quantum
– volume: 132
  year: 2022
  article-title: The future of quantum computing with superconducting qubits
  publication-title: J Appl Phys
– volume: 60
  start-page: 226
  issue: 3
  year: 2019
  end-page: 245
  article-title: Quantum error correction: an introductory guide
  publication-title: Contemp Phys
– start-page: 306
  year: 2020
  end-page: 316
– year: 2021
– volume: 73
  start-page: 44
  issue: 6
  year: 2020
  end-page: 50
  article-title: Majorana qubits for topological quantum computing
  publication-title: Phys Today
– volume: 4963
  start-page: 337
  year: 2008
  end-page: 340
– volume: 21
  start-page: 1111
  year: 2022
  end-page: 1115
  article-title: Evidence of a room‐temperature quantum spin hall edge state in a higher‐order topological insulator
  publication-title: Nat Mater
– volume: 4
  start-page: 269
  year: 2020
  article-title: Quantum natural gradient
  publication-title: Quantum
– volume: 76
  year: 2007
  article-title: Charge‐insensitive qubit design derived from the Cooper pair box
  publication-title: Phys Rev A
– volume: 99
  year: 2019
  article-title: Evaluating analytic gradients on quantum hardware
  publication-title: Phys Rev A
– volume: 18
  year: 2013
  article-title: A survey of quantum Lyapunov control methods
  publication-title: ScientificWorldJournal
– volume: 587
  start-page: 342
  issue: 7834
  year: 2020
  end-page: 343
  article-title: Quantum computer race intensifies as alternative technology gains steam
  publication-title: Nature
– volume: 2
  start-page: 79
  year: 2018
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
– volume: 37
  start-page: 332
  issue: 3
  year: 1992
  end-page: 341
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans Automat Contr
– volume: 7
  start-page: 864
  issue: 4
  year: 2022
  end-page: 874
  article-title: Energy use in quantum data centers: scaling the impact of computer architecture, qubit performance, size, and thermal parameters
  publication-title: IEEE Trans Sustain Comput
– volume: 4
  start-page: 263
  year: 2020
  article-title: An adaptive optimizer for measurement‐frugal variational algorithms
  publication-title: Quantum
– volume: 3
  issue: 3
  year: 2018
  article-title: Quantum optimization using variational algorithms on near‐term quantum devices
  publication-title: Quantum Sci Technol
– volume: 129
  issue: 25
  year: 2022
  article-title: Feedback‐based quantum optimization
  publication-title: Phys Rev Lett
– volume: 101
  year: 2020
  article-title: Circuit‐centric quantum classifiers
  publication-title: Phys Rev A
– start-page: 51
  year: 1994
  end-page: 67
– year: 2022
– volume: 8
  issue: 2
  year: 2023
  article-title: Is quantum computing green? An estimate for an energy‐efficiency quantum advantage
  publication-title: Quantum Sci Technol
– start-page: 161
  year: 2022
  end-page: 174
– volume: 267
  start-page: 11
  year: 2001
  end-page: 23
  article-title: Cartan decomposition of SU(2 ) and control of spin systems
  publication-title: Chem Phys
– volume: 4
  year: 2019
  article-title: Parameterized quantum circuits as machine learning models
  publication-title: Quantum Sci Technol
– volume: 5
  start-page: 392
  year: 2021
  article-title: Blueprint for a scalable photonic fault‐tolerant quantum computer
  publication-title: Quantum
– volume: 6
  start-page: 677
  year: 2022
  article-title: General parameter‐shift rules for quantum gradients
  publication-title: Quantum
– volume: 4
  year: 2023
  article-title: Quantum computing with differentiable quantum transforms
  publication-title: ACM Trans Quantum Comput
– volume: 23
  start-page: 462
  issue: 3
  year: 1952
  end-page: 466
  article-title: Stochastic estimation of the maximum of a regression function
  publication-title: Ann Math Stat
– start-page: 11
  year: 2008
  end-page: 15
– volume: 3
  start-page: 214
  year: 2019
  article-title: An initialization strategy for addressing barren plateaus in parametrized quantum circuits
  publication-title: Quantum
– volume: 5
  start-page: 567
  year: 2021
  article-title: Simultaneous perturbation stochastic approximation of the quantum fisher information
  publication-title: Quantum
– start-page: 51
  volume-title: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation
  year: 1994
  ident: e_1_2_10_47_1
– ident: e_1_2_10_4_1
  doi: 10.1103/PhysRevA.76.042319
– ident: e_1_2_10_30_1
  doi: 10.1080/00107514.2019.1667078
– ident: e_1_2_10_35_1
  doi: 10.1103/PhysRevLett.129.250502
– ident: e_1_2_10_32_1
  doi: 10.22331/q‐2020‐05‐11‐263
– ident: e_1_2_10_21_1
– ident: e_1_2_10_40_1
  doi: 10.1145/3592622
– start-page: 161
  volume-title: International Conference for High Performance Computing, Networking, Storage and Analysis (SC) IEEE/ACM
  year: 2022
  ident: e_1_2_10_43_1
– ident: e_1_2_10_26_1
  doi: 10.1109/9.119632
– ident: e_1_2_10_3_1
  doi: 10.1038/d41586‐020‐03237‐w
– ident: e_1_2_10_20_1
– ident: e_1_2_10_6_1
  doi: 10.1557/mrs.2013.20
– ident: e_1_2_10_2_1
  doi: 10.1201/9781003358817-7
– ident: e_1_2_10_34_1
– ident: e_1_2_10_9_1
  doi: 10.1063/5.0082975
– ident: e_1_2_10_18_1
– ident: e_1_2_10_31_1
– ident: e_1_2_10_15_1
– ident: e_1_2_10_27_1
  doi: 10.22331/q‐2021‐10‐20‐567
– ident: e_1_2_10_7_1
  doi: 10.1063/PT.3.4499
– ident: e_1_2_10_14_1
  doi: 10.22331/q‐2022‐05‐09‐707
– ident: e_1_2_10_51_1
  doi: 10.1103/PhysRevResearch.4.023017
– ident: e_1_2_10_28_1
  doi: 10.1103/PhysRevA.101.032308
– ident: e_1_2_10_39_1
  doi: 10.1155/2013/967529
– ident: e_1_2_10_50_1
  doi: 10.22331/q‐2019‐12‐09‐214
– ident: e_1_2_10_23_1
  doi: 10.1103/PhysRevA.99.032331
– ident: e_1_2_10_22_1
  doi: 10.22331/q‐2020‐05‐25‐269
– ident: e_1_2_10_33_1
– ident: e_1_2_10_17_1
  doi: 10.1088/2058‐9565/ab4eb5
– ident: e_1_2_10_38_1
  doi: 10.1088/1751‐8113/47/26/265206
– ident: e_1_2_10_10_1
– ident: e_1_2_10_42_1
  doi: 10.1109/QCS54837.2021.00016
– ident: e_1_2_10_46_1
  doi: 10.1007/978-3-540-78800-3_24
– ident: e_1_2_10_41_1
  doi: 10.1109/QCE49297.2020.00045
– volume-title: Advantage: The First and Only Quantum Computer Built for Business [Data Sheet]
  year: 2022
  ident: e_1_2_10_44_1
– ident: e_1_2_10_16_1
– ident: e_1_2_10_24_1
  doi: 10.22331/q‐2022‐03‐30‐677
– ident: e_1_2_10_29_1
  doi: 10.22331/q‐2021‐01‐28‐391
– ident: e_1_2_10_37_1
  doi: 10.22331/q‐2018‐08‐06‐79
– ident: e_1_2_10_36_1
  doi: 10.1016/S0301‐0104(01)00318‐4
– ident: e_1_2_10_12_1
  doi: 10.1088/2058‐9565/acae3e
– ident: e_1_2_10_49_1
  doi: 10.22331/q‐2024‐03‐07‐1275
– ident: e_1_2_10_25_1
  doi: 10.1214/aoms/1177729392
– ident: e_1_2_10_19_1
  doi: 10.1162/089976698300017746
– start-page: 11
  volume-title: Proceedings of the 7th Python in Science Conference (SciPy 2008)
  year: 2008
  ident: e_1_2_10_45_1
– ident: e_1_2_10_5_1
  doi: 10.22331/q‐2021‐02‐04‐392
– ident: e_1_2_10_8_1
  doi: 10.1038/s41563‐022‐01304‐3
– ident: e_1_2_10_11_1
– ident: e_1_2_10_13_1
  doi: 10.1088/2058‐9565/aab822
– ident: e_1_2_10_48_1
  doi: 10.1109/TSUSC.2022.3190242
SSID ssj0011031
Score 2.3697722
Snippet Summary Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional...
Since the dawn of quantum computing (QC), theoretical developments like Shor's algorithm proved the conceptual superiority of QC over traditional computing....
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Annealing
circuit learning
Cognitive tasks
Energy consumption
Energy requirements
error mitigation
heterogeneous computing
Machine learning
Optimization
Optimization algorithms
quantum annealing
Quantum computers
Quantum computing
quantum optimization
Qubits (quantum computing)
shot optimization
sustainability
Title Quantum optimization algorithms: Energetic implications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8121
https://www.proquest.com/docview/3071608550
https://www.osti.gov/biblio/2340172
Volume 36
WOSCitedRecordID wos001207122800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6k9eDF-sTYKhHEWzTdbLa73qS2eJBSxUJvy2Y70YJ90Ie_350mqe1BEIRALkkI385rd2a-Abi2kUkxxjhIYpQB5yHldzkGqWJGqYGJI2tWwyYanY7s91U3r6qkXpiMH2J94EaasbLXpOAmmd_9kIbaKd467-R2PmXmxJaXoPz42u49r3MINMAgY0tlQeji9oJ6NmR3xbtbzqg0cUq1FWhuhqsrf9Ou_OdPD2A_jzL9h0wsDmEHx0dQKSY4-LlCH0PjZemQXY78ibMco7wl0zef75PZcPExmt_7LeoNpEZHf7hRe34CvXbrrfkU5KMUAhs5nx401CAVSZgIG6qGTVFSAk9JQYRXyi2i4EahMKgS4y4ZolJW8oESiUgSI6LoFErjyRjPwGcCTVRnQqJBjjySVtSN02y0OECZSg-uCkz1NGPM0Bk3MtMOCU1IeFAlsLXz8kRVa6mmxy40izhtST2oFWugc42aa2eL6oKK6kIPblZo__p13ey26H7-1wersMdcrEJHtiyuQWkxW-IF7NqvxXA-u8zl6hvf9NEv
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kCnrxLdZnBPEWTTeb7a6epLZUrKWKgrdls51owT7ow9_vTpPU9iAIQiCXJIRv57WzM98AnNvQJBhh5McRSp_zgM53OfqJYkaptolCa6bDJsrNpnx7U60luMl7YVJ-iFnCjTRjaq9JwSkhffXDGmoHeOnck9v6LHMnRVEBlu-ea6-N2SECTTBI6VKZH7jAPeeeDdhV_u6CNyr0nVYtRJrz8erU4dQ2_vWrm7CexZnebSoYW7CEvW3YyGc4eJlK70D5aeKwnXS9vrMd3awp0zOf7_1hZ_zRHV17VeoOpFZHrzNXfb4Lr7XqS6XuZ8MUfBs6r-6XVTsRcRALG6iyTVDSEZ6SgiivlFtGwY1CYVDFxl0yQKWs5G0lYhHHRoThHhR6_R7ug8cEmrDEhESDHHkorSgZp9tosY0ykUU4y0HVg5QzQ6fsyEw7JDQhUYRDQls7P09ktZaqeuxYs5DTprQIR_ki6EynRtpZo5KgsrqgCBdTuH_9uq60qnQ_-OuDp7Baf3ls6MZ98-EQ1piLXCiBy6IjKIyHEzyGFfs17oyGJ5mQfQNsi9Uf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJuKL8xPnplYQ3-q6NM0SfZK5oTjGFAd7C2l61YH7YB_-_SZrO7cHQRAKfWlL-SW_3CV39zuAK-2rGAMM3DBA7lLq2fguRTcWRAkRqcDXatlsot7p8H5fdHNwl9XCJPoQqwM3y4zlem0JjpMorv6ohuoJ3hjzZLY-BRoIZlhZeHht9dqrIILtYJDIpRLXM457pj3rkWr27oY1yo8NqzY8zXV_dWlwWsV__eoe7KZ-pnOfTIx9yOHoAIpZDwcnpfQh1F8WBtvF0BmbtWOYFmU66vN9PB3MP4azW6dpqwNtqaMzWMs-P4Jeq_nWeHTTZgqu9o1Vd-siilnohUx7oq5j5DaEJzizklfCDCOjSiBTKEJlLu6hEJrTSLCQhaFivn8M-dF4hCfgEIbKrxHGUSFF6nPNaspwGzVGyGNegssMVDlJNDNkoo5MpEFCWiRKULZoS2PnrVittlk9ei6JT-2mtASVbBBkyqmZNKtRjdm0Oq8E10u4f_26bHSb9n761wcvYLv70JLtp85zGXaIcVzs-S0JKpCfTxd4Blv6az6YTc_TOfYNN57Umg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+optimization+algorithms%3A+Energetic+implications&rft.jtitle=Concurrency+and+computation&rft.au=Hong+Enriquez%2C+Rolando+P&rft.au=Badia%2C+Rosa+M&rft.au=Chapman%2C+Barbara&rft.au=Bresniker%2C+Kirk&rft.date=2024-07-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=16&rft_id=info:doi/10.1002%2Fcpe.8121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon