Bifurcation and chaos in a discrete Holling–Tanner model with Beddington–DeAngelis functional response

The dynamics of a discrete Holling–Tanner model with Beddington–DeAngelis functional response is studied. The permanence and local stability of fixed points for the model are derived. The center manifold theorem and bifurcation theory are used to show that the model can undergo flip and Hopf bifurca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in continuous and discrete models Ročník 2023; číslo 1; s. 41
Hlavní autoři: Yang, Run, Zhao, Jianglin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 23.10.2023
Springer Nature B.V
Témata:
ISSN:2731-4235, 1687-1839, 2731-4235, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The dynamics of a discrete Holling–Tanner model with Beddington–DeAngelis functional response is studied. The permanence and local stability of fixed points for the model are derived. The center manifold theorem and bifurcation theory are used to show that the model can undergo flip and Hopf bifurcations. Codimension-two bifurcation associated with 1:2 resonance is analyzed by applying the bifurcation theory. Numerical simulations are performed not only to verify the correctness of theoretical analysis but to explore complex dynamical behaviors such as period-6, 7, 10, 12 orbits, a cascade of period-doubling, quasi-periodic orbits, and the chaotic sets. The maximum Lyapunov exponents validate the chaotic dynamical behaviors of the system. The feedback control method is considered to stabilize the chaotic orbits. These complex dynamical behaviors imply that the coexistence of predator and prey may produce very complex patterns.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-4235
1687-1839
2731-4235
1687-1847
DOI:10.1186/s13662-023-03788-y