Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC
Traditional protocols for high-throughput screening and experimentation are inherently time-consuming and cost-ineffective. Herein, we present a continuous flow-based automated synthesis platform that allows for rapid screenings of polymerizations. The platform uses online monitoring to acquire real...
Uloženo v:
| Vydáno v: | Digital discovery Ročník 1; číslo 4; s. 519 - 526 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
08.08.2022
|
| ISSN: | 2635-098X, 2635-098X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Traditional protocols for high-throughput screening and experimentation are inherently time-consuming and cost-ineffective. Herein, we present a continuous flow-based automated synthesis platform that allows for rapid screenings of polymerizations. The platform uses online monitoring to acquire real time analytic data. Software is developed to guide data acquisition, and most importantly, to carry out reactions and their analysis autonomously. Further algorithms automatically detect experimental inaccuracies, and clean data. Data is aggregated and provided directly in a machine-readable manner, opening pathways towards creation of ‘big data’ sets for kinetic information that is independent of individual user biases and systematic errors. We demonstrate this platform on reversible-addition fragmentation chain transfer polymerization (RAFT). 8 different operators, ranging from PhD students with no prior experience in flow chemistry or RAFT polymerization, up to the professor of the research group created in this way a coherent dataset spanning 8 different monomers containing 3600 NMR spectra and about 400 molecular weight distribution analyses. Coherence of the dataset is demonstrated by reducing key kinetic information that describe the whole covered reaction space in a single parameter. |
|---|---|
| AbstractList | Traditional protocols for high-throughput screening and experimentation are inherently time-consuming and cost-ineffective. Herein, we present a continuous flow-based automated synthesis platform that allows for rapid screenings of polymerizations. The platform uses online monitoring to acquire real time analytic data. Software is developed to guide data acquisition, and most importantly, to carry out reactions and their analysis autonomously. Further algorithms automatically detect experimental inaccuracies, and clean data. Data is aggregated and provided directly in a machine-readable manner, opening pathways towards creation of ‘big data’ sets for kinetic information that is independent of individual user biases and systematic errors. We demonstrate this platform on reversible-addition fragmentation chain transfer polymerization (RAFT). 8 different operators, ranging from PhD students with no prior experience in flow chemistry or RAFT polymerization, up to the professor of the research group created in this way a coherent dataset spanning 8 different monomers containing 3600 NMR spectra and about 400 molecular weight distribution analyses. Coherence of the dataset is demonstrated by reducing key kinetic information that describe the whole covered reaction space in a single parameter. |
| Author | Van de Reydt, Emma Wyers, Dries Buckinx, Axel-Laurenz Thakur, Kirti Junkers, Tanja Voorter, Pieter-Jan Hooker, Jordan Van Herck, Joren Abeysekera, Iyomali Cai, Kewei |
| Author_xml | – sequence: 1 givenname: Joren surname: Van Herck fullname: Van Herck, Joren organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 2 givenname: Iyomali surname: Abeysekera fullname: Abeysekera, Iyomali organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 3 givenname: Axel-Laurenz surname: Buckinx fullname: Buckinx, Axel-Laurenz organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 4 givenname: Kewei surname: Cai fullname: Cai, Kewei organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 5 givenname: Jordan orcidid: 0000-0002-2049-0137 surname: Hooker fullname: Hooker, Jordan organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 6 givenname: Kirti surname: Thakur fullname: Thakur, Kirti organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 7 givenname: Emma surname: Van de Reydt fullname: Van de Reydt, Emma organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 8 givenname: Pieter-Jan surname: Voorter fullname: Voorter, Pieter-Jan organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 9 givenname: Dries surname: Wyers fullname: Wyers, Dries organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia – sequence: 10 givenname: Tanja orcidid: 0000-0002-6825-5777 surname: Junkers fullname: Junkers, Tanja organization: Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia |
| BookMark | eNpNkM1OwzAQhC1UJErphSfwGSlgx4nTHFFbCqJQiR-JW-TY68ZVake2cyhPTwpIcJmd2V3N4TtHI-ssIHRJyTUlrLxZpIsFIYTljydonHKWJ6ScfYz--TM0DWE3_KRFQSnjY7TbdOBFdD4xVkEHg9iIG7Ntkth412-bro-4c-1hD958imicxUF6AGvsFtcigMLDSvTR7UUcgrGtsYCfn16wsMfbd3xdzi_QqRZtgOnvnKD3u-Xb_D5Zb1YP89t1IhnNYqJLlWUScg56JmTJua6Ba1JLLXMAUFykdapUoSCrZzrNaiIUVTlXORCueckm6OqnV3oXggdddd7shT9UlFRHUNUfKPYFh-ZgiQ |
| Cites_doi | 10.1039/c0py00113a 10.1021/ma500803k 10.1021/co200007w 10.1021/acs.macromol.8b01864 10.1039/D2PY00147K 10.1039/C4PY00496E 10.1039/C9PY00140A 10.3762/bjoc.13.97 10.1021/acsmacrolett.1c00719 10.1016/j.aca.2019.02.026 10.1021/op900305v 10.1039/D2PY00040G 10.1002/chem.201802594 10.1016/j.polymer.2019.121828 10.1021/acsmacrolett.9b00767 10.1021/ma200760q 10.1021/acs.macromol.7b00767 10.1002/cmtd.202100090 10.3390/polym11020320 10.1021/ma302319z 10.1021/acsmacrolett.9b00091 10.1002/anie.201810384 10.1039/C7PY00360A 10.1021/acs.macromol.9b00214 10.1039/C9PY00982E 10.1021/acsmacrolett.7b00587 10.1039/C4CC10426A 10.1016/j.progpolymsci.2020.101256 10.1002/pola.20027 10.1021/acscombsci.9b00110 10.1002/pola.10788 10.1021/ma500304f 10.1002/mren.201700016 10.1021/acs.chemrev.0c01026 10.1021/acs.chemrev.7b00183 10.1002/mren.200700024 10.1002/ejoc.201700851 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1039/D2DD00035K |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2635-098X |
| EndPage | 526 |
| ExternalDocumentID | 10_1039_D2DD00035K |
| GroupedDBID | 0R~ AAFWJ AARTK AAYXX ABIQK AFPKN AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI C6K CITATION EBS GROUPED_DOAJ H13 M~E RRC |
| ID | FETCH-LOGICAL-c314t-f9d44ce56ef8ac966fbe6f0bcfc5eeed6a2b2dd7de4b8f24b0ad1d56d5e06f693 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101858900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2635-098X |
| IngestDate | Sat Nov 29 05:38:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c314t-f9d44ce56ef8ac966fbe6f0bcfc5eeed6a2b2dd7de4b8f24b0ad1d56d5e06f693 |
| ORCID | 0000-0002-6825-5777 0000-0002-2049-0137 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/dd/d2dd00035k |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1039_D2DD00035K |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-08 |
| PublicationDateYYYYMMDD | 2022-08-08 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital discovery |
| PublicationYear | 2022 |
| References | Oliver (D2DD00035K/cit14/1) 2019; 52 Haven (D2DD00035K/cit20/1) 2017; 2017 Haven (D2DD00035K/cit5/1) 2017; 8 Niu (D2DD00035K/cit18/1) 2017; 6 Botha (D2DD00035K/cit21/1) 2019; 10 Haehnel (D2DD00035K/cit36/1) 2014; 47 Perrier (D2DD00035K/cit28/1) 2017; 50 Guerrero-Sanchez (D2DD00035K/cit1/1) 2021 Beuermann (D2DD00035K/cit38/1) 2022; 13 Vandenbergh (D2DD00035K/cit32/1) 2014; 47 Rosenfeld (D2DD00035K/cit26/1) 2007; 1 Perevyazko (D2DD00035K/cit6/1) 2019; 182 Matioszek (D2DD00035K/cit30/1) 2019; 52 Haven (D2DD00035K/cit33/1) 2017; 11 Zheng (D2DD00035K/cit4/1) 2019; 8 Plutschack (D2DD00035K/cit15/1) 2017; 117 Devlaminck (D2DD00035K/cit29/1) 2019; 11 Rubens (D2DD00035K/cit7/1) 2019 Knox (D2DD00035K/cit8/1) 2019; 10 Rosales-Guzmán (D2DD00035K/cit9/1) 2019; 21 Van Herck (D2DD00035K/cit17/1) 2022; 2 Shukla (D2DD00035K/cit27/1) 2017; 13 Zaquen (D2DD00035K/cit16/1) 2020; 107 Soheilmoghaddam (D2DD00035K/cit2/1) 2021; 121 Keddie (D2DD00035K/cit10/1) 2011; 44 Zhang (D2DD00035K/cit11/1) 2004; 42 Levere (D2DD00035K/cit25/1) 2010; 1 Haven (D2DD00035K/cit31/1) 2014; 5 Hoogenboom (D2DD00035K/cit12/1) 2003; 41 Fillbrook (D2DD00035K/cit19/1) 2022 Rubens (D2DD00035K/cit24/1) 2019; 58 Carter (D2DD00035K/cit22/1) 2010; 14 Haehnel (D2DD00035K/cit37/1) 2013; 46 Grootveld (D2DD00035K/cit35/1) 2019; 1067 Potyrailo (D2DD00035K/cit3/1) 2011; 13 Knox (D2DD00035K/cit34/1) 2022; 13 Richards (D2DD00035K/cit13/1) 2018; 24 Haven (D2DD00035K/cit23/1) 2015; 51 |
| References_xml | – volume: 1 start-page: 1086 year: 2010 ident: D2DD00035K/cit25/1 publication-title: Polym. Chem. doi: 10.1039/c0py00113a – volume: 47 start-page: 5051 year: 2014 ident: D2DD00035K/cit32/1 publication-title: Macromolecules doi: 10.1021/ma500803k – volume: 13 start-page: 579 year: 2011 ident: D2DD00035K/cit3/1 publication-title: ACS Comb. Sci. doi: 10.1021/co200007w – volume: 52 start-page: 3 year: 2019 ident: D2DD00035K/cit14/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01864 – volume: 13 start-page: 1891 year: 2022 ident: D2DD00035K/cit38/1 publication-title: Polym. Chem. doi: 10.1039/D2PY00147K – volume-title: RAFT Polymerization year: 2021 ident: D2DD00035K/cit1/1 – volume: 5 start-page: 5236 year: 2014 ident: D2DD00035K/cit31/1 publication-title: Polym. Chem. doi: 10.1039/C4PY00496E – volume: 10 start-page: 2230 year: 2019 ident: D2DD00035K/cit21/1 publication-title: Polym. Chem. doi: 10.1039/C9PY00140A – volume: 13 start-page: 960 year: 2017 ident: D2DD00035K/cit27/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.13.97 – start-page: 166 year: 2022 ident: D2DD00035K/cit19/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.1c00719 – volume: 1067 start-page: 11 year: 2019 ident: D2DD00035K/cit35/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.02.026 – volume: 14 start-page: 393 year: 2010 ident: D2DD00035K/cit22/1 publication-title: Org. Process Res. Dev. doi: 10.1021/op900305v – volume: 13 start-page: 1576 year: 2022 ident: D2DD00035K/cit34/1 publication-title: Polym. Chem. doi: 10.1039/D2PY00040G – volume: 24 start-page: 13758 year: 2018 ident: D2DD00035K/cit13/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201802594 – volume: 182 start-page: 121828 year: 2019 ident: D2DD00035K/cit6/1 publication-title: Polymer doi: 10.1016/j.polymer.2019.121828 – start-page: 1437 year: 2019 ident: D2DD00035K/cit7/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00767 – volume: 44 start-page: 6738 year: 2011 ident: D2DD00035K/cit10/1 publication-title: Macromolecules doi: 10.1021/ma200760q – volume: 50 start-page: 7433 year: 2017 ident: D2DD00035K/cit28/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00767 – volume: 2 start-page: e202100090 year: 2022 ident: D2DD00035K/cit17/1 publication-title: Chemistry–Methods doi: 10.1002/cmtd.202100090 – volume: 11 start-page: 320 year: 2019 ident: D2DD00035K/cit29/1 publication-title: Polymers doi: 10.3390/polym11020320 – volume: 46 start-page: 15 year: 2013 ident: D2DD00035K/cit37/1 publication-title: Macromolecules doi: 10.1021/ma302319z – volume: 8 start-page: 326 year: 2019 ident: D2DD00035K/cit4/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00091 – volume: 58 start-page: 3183 year: 2019 ident: D2DD00035K/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810384 – volume: 8 start-page: 2972 year: 2017 ident: D2DD00035K/cit5/1 publication-title: Polym. Chem. doi: 10.1039/C7PY00360A – volume: 52 start-page: 3376 year: 2019 ident: D2DD00035K/cit30/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00214 – volume: 10 start-page: 4774 year: 2019 ident: D2DD00035K/cit8/1 publication-title: Polym. Chem. doi: 10.1039/C9PY00982E – volume: 6 start-page: 1109 year: 2017 ident: D2DD00035K/cit18/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00587 – volume: 51 start-page: 4611 year: 2015 ident: D2DD00035K/cit23/1 publication-title: Chem. Commun. doi: 10.1039/C4CC10426A – volume: 107 start-page: 101256 year: 2020 ident: D2DD00035K/cit16/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101256 – volume: 42 start-page: 1876 year: 2004 ident: D2DD00035K/cit11/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20027 – volume: 21 start-page: 771 year: 2019 ident: D2DD00035K/cit9/1 publication-title: ACS Comb. Sci. doi: 10.1021/acscombsci.9b00110 – volume: 41 start-page: 2425 year: 2003 ident: D2DD00035K/cit12/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.10788 – volume: 47 start-page: 3483 year: 2014 ident: D2DD00035K/cit36/1 publication-title: Macromolecules doi: 10.1021/ma500304f – volume: 11 start-page: 1700016 year: 2017 ident: D2DD00035K/cit33/1 publication-title: Macromol. React. Eng. doi: 10.1002/mren.201700016 – volume: 121 start-page: 10792 year: 2021 ident: D2DD00035K/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01026 – volume: 117 start-page: 11796 year: 2017 ident: D2DD00035K/cit15/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00183 – volume: 1 start-page: 547 year: 2007 ident: D2DD00035K/cit26/1 publication-title: Macromol. React. Eng. doi: 10.1002/mren.200700024 – volume: 2017 start-page: 6474 year: 2017 ident: D2DD00035K/cit20/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201700851 |
| SSID | ssj0002771136 |
| Score | 2.325361 |
| Snippet | Traditional protocols for high-throughput screening and experimentation are inherently time-consuming and cost-ineffective. Herein, we present a continuous... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 519 |
| Title | Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC |
| Volume | 1 |
| WOSCitedRecordID | wos001101858900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2635-098X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771136 issn: 2635-098X databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2635-098X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771136 issn: 2635-098X databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FgkQviKd4VivBLVrhx9rrPUZJEa8GBAX1Ftn7QKaRE6VOSTnwc_idzOzGD9oeyoGLFa3ixMp8mZmd2fk-Ql6YXAS5NDlL88gyntqEgc9TLLRhqKTKYlU4ntn3YjrNjo7kx8HgdzMLczoXVZVtNnL5X00Na2BsHJ39B3O3HwoL8BqMDlcwO1yvZPgPS-Na56xsFW7rIbISs60mz3JdozbDGfZq_BDmEHwH7GexaoBRTWMHIV_XC8hmDXIzuVR0evDJdRo8t8bw8_64n9hOym8oP4INH4WnQttK_dccybRW3uu-XfRGz0YFoMgcG6d0NHxzBl83L9vywFodl5WLjKONmTOc3zbVz65l4k8hmB-m7BcuYM-LBy16vhZpcFggnbIwhKJL1hoH3cMh7znbZOtsfdxO_OT9hZAQxMioOokmE9c2fdcFvqbZfy4etqcUXX8-lrPu3mvkeiQSiUcHD351tbxICJTGQR3D5vkbJtxYvuxu7-U-vSTm8Da5td190JFHzR0yMNVdcnPciP7dI98vQw89hx76N3poix7q0ENhqUUP9eihgB4K6KEePRTQc598ebV_OH7NtnIcTMUhr5mVmnNlktTYLFewTbaFSW1QKKsSA6kW_NuLSGuhDS8yG_EiyHWok1QnJkhtKuMHZKdaVOYhoXGcCW7CwuaR4AnnqHivkXYoUKEWKX9Enjc_1GzpWVdmF63x-ErvekJ2O_Q9JTv1am2ekRvqtC5PVnuuBrPnzPkHpqp9Eg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator-independent+high-throughput+polymerization+screening+based+on+automated+inline+NMR+and+online+SEC&rft.jtitle=Digital+discovery&rft.au=Van+Herck%2C+Joren&rft.au=Abeysekera%2C+Iyomali&rft.au=Buckinx%2C+Axel-Laurenz&rft.au=Cai%2C+Kewei&rft.date=2022-08-08&rft.issn=2635-098X&rft.eissn=2635-098X&rft.volume=1&rft.issue=4&rft.spage=519&rft.epage=526&rft_id=info:doi/10.1039%2FD2DD00035K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2DD00035K |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-098X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-098X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-098X&client=summon |