Selecting intervals to optimize the design of observational studies subject to fine balance constraints

Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. I...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 47; číslo 3; s. 33
Hlavní autor: Levin, Asaf
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2024
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-024-01116-y