Bases for Riemann–Roch spaces of linearized function fields with applications to generalized algebraic geometry codes

Several applications of function fields over finite fields, or equivalently, algebraic curves over finite fields, require computing bases for Riemann–Roch spaces. In this paper, we determine explicit bases for Riemann–Roch spaces of linearized function fields, and we give a lower bound for the minim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 92; číslo 10; s. 3033 - 3048
Hlavní autor: Navarro, Horacio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2024
Springer Nature B.V
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Several applications of function fields over finite fields, or equivalently, algebraic curves over finite fields, require computing bases for Riemann–Roch spaces. In this paper, we determine explicit bases for Riemann–Roch spaces of linearized function fields, and we give a lower bound for the minimum distance of generalized algebraic geometry codes. As a consequence, we construct generalized algebraic geometry codes with good parameters.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-024-01426-6