Four types of ensemble coding in data visualizations
Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another s...
Uložené v:
| Vydané v: | Journal of vision (Charlottesville, Va.) Ročník 16; číslo 5; s. 11 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
2016
|
| Predmet: | |
| ISSN: | 1534-7362, 1534-7362 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research. |
|---|---|
| AbstractList | Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research. Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research. |
| Author | Haroz, Steve Gleicher, Michael Franconeri, Steven Szafir, Danielle Albers |
| Author_xml | – sequence: 1 givenname: Danielle Albers surname: Szafir fullname: Szafir, Danielle Albers organization: Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USAdanielle.szafir@colorado.edu – sequence: 2 givenname: Steve surname: Haroz fullname: Haroz, Steve organization: Department of Psychology, Northwestern University, Evanston, IL, USAsharoz@northwestern.eduhttp://steveharoz.com/ – sequence: 3 givenname: Michael surname: Gleicher fullname: Gleicher, Michael organization: Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USAgleicher@cs.wisc.eduhttp://pages.cs.wisc.edu/~gleicher/ – sequence: 4 givenname: Steven surname: Franconeri fullname: Franconeri, Steven organization: Department of Psychology, Northwestern University, Evanston, IL, USAfranconeri@northwestern.eduhttp://viscog.psych.northwestern.edu/ |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26982369$$D View this record in MEDLINE/PubMed |
| BookMark | eNpd0E1Lw0AQBuBFKvZD8R9IbnpJ3dmvJEcpVoWCFz0vm81EVpLdmk2E-uuNtgXxNO_h4R1m5mTig0dCLoEuAVR2C2opx3RCZiC5SDOu2ORPnpJ5jO-UMiopnJEpU0XOuCpmRKzD0CX9bosxCXWCPmJbNpjYUDn_ljifVKY3yaeLg2ncl-ld8PGcnNamiXhxmAvyur5_WT2mm-eHp9XdJrUcRJ9aO24rapCsUtyUKssrtChKI9EA55zlvFZQoBSlYECzjEkQCkteiMKoHPiC3Ox7t134GDD2unXRYtMYj2GIGrJMSKYUFSO9OtChbLHS2861ptvp46UjSPfAdiHGDmttXf97Tt8Z12ig-ueTGpSWYxr99T9_rPwvvwFFsG9r |
| CitedBy_id | crossref_primary_10_1109_TVCG_2022_3189883 crossref_primary_10_1109_TVCG_2022_3232959 crossref_primary_10_1109_TVCG_2024_3456385 crossref_primary_10_1016_j_cag_2024_103906 crossref_primary_10_3758_s13423_018_1525_7 crossref_primary_10_1109_TVCG_2018_2865264 crossref_primary_10_1109_TVCG_2020_3030365 crossref_primary_10_1109_TVCG_2021_3114783 crossref_primary_10_1109_TVCG_2017_2723397 crossref_primary_10_1109_TVCG_2019_2934786 crossref_primary_10_1109_TVCG_2022_3210763 crossref_primary_10_1111_cgf_13408 crossref_primary_10_1111_cgf_13409 crossref_primary_10_1146_annurev_vision_110323_110009 crossref_primary_10_1109_TVCG_2024_3456305 crossref_primary_10_3758_s13421_024_01646_0 crossref_primary_10_1109_TVCG_2024_3372620 crossref_primary_10_1186_s41235_023_00465_2 crossref_primary_10_1109_TVCG_2022_3158093 crossref_primary_10_1109_TVCG_2023_3326571 crossref_primary_10_1109_TVCG_2022_3221014 crossref_primary_10_1007_s00426_023_01883_z crossref_primary_10_1109_TVCG_2019_2898438 crossref_primary_10_1109_TVCG_2021_3098240 crossref_primary_10_1109_TVCG_2024_3388515 crossref_primary_10_3758_s13414_020_02212_x crossref_primary_10_1109_TVCG_2024_3456391 crossref_primary_10_3758_s13428_020_01520_2 crossref_primary_10_5406_19398298_136_1_01 crossref_primary_10_5194_nhess_20_1557_2020 crossref_primary_10_1038_s41598_023_37172_3 crossref_primary_10_1080_00087041_2024_2447628 crossref_primary_10_1111_cgf_14826 crossref_primary_10_1109_TVCG_2020_3030335 crossref_primary_10_1109_TVCG_2022_3209348 crossref_primary_10_1145_3231772 crossref_primary_10_1073_pnas_1807180116 crossref_primary_10_1109_TVCG_2018_2865240 crossref_primary_10_1109_TVCG_2021_3068337 crossref_primary_10_1109_TVCG_2019_2934801 crossref_primary_10_1186_s41235_017_0076_1 crossref_primary_10_1109_TVCG_2021_3114844 crossref_primary_10_1109_TVCG_2018_2876539 crossref_primary_10_1109_TVCG_2020_3045918 crossref_primary_10_1109_TVCG_2021_3114684 crossref_primary_10_3390_ijgi10040213 crossref_primary_10_1109_TVCG_2017_2745086 crossref_primary_10_1111_cgf_13902 crossref_primary_10_1177_09637214211009512 crossref_primary_10_1109_TVCG_2017_2744199 crossref_primary_10_1109_TVCG_2025_3541571 crossref_primary_10_3724_SP_J_1089_2022_18967 crossref_primary_10_3390_bs13100827 crossref_primary_10_1109_TVCG_2022_3192364 crossref_primary_10_1016_j_isprsjprs_2022_10_002 crossref_primary_10_3758_s13414_022_02528_w crossref_primary_10_1016_j_asoc_2024_111651 crossref_primary_10_1109_TVCG_2020_3029413 crossref_primary_10_1109_TVCG_2020_3030439 crossref_primary_10_1109_TVCG_2022_3231230 crossref_primary_10_1177_15291006211051956 crossref_primary_10_1177_1473871618807121 crossref_primary_10_3758_s13414_019_01938_7 crossref_primary_10_1109_TVCG_2018_2864884 crossref_primary_10_1177_0956797618822798 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1167/16.5.11 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1534-7362 |
| ExternalDocumentID | 26982369 10_1167_16_5_11 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- 29L 2WC 53G 5GY 5VS AAFWJ AAYXX ABIVO ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GROUPED_DOAJ GX1 KQ8 M~E OK1 OVT P2P RNS RPM TR2 TRV W2D W8F XSB CGR CUY CVF ECM EIF NPM RHF 7X8 |
| ID | FETCH-LOGICAL-c314t-cc5019f152d63ab678dece4ba5ea1333283f619e54b42107725146eb3949a6813 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374173300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-7362 |
| IngestDate | Fri Jul 11 12:25:27 EDT 2025 Thu Jan 02 22:20:38 EST 2025 Tue Nov 18 22:37:00 EST 2025 Sat Nov 29 01:35:41 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c314t-cc5019f152d63ab678dece4ba5ea1333283f619e54b42107725146eb3949a6813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://jov.arvojournals.org/arvo/content_public/journal/jov/935062/i1534-7362-16-5-11.pdf |
| PMID | 26982369 |
| PQID | 1774526604 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1774526604 pubmed_primary_26982369 crossref_citationtrail_10_1167_16_5_11 crossref_primary_10_1167_16_5_11 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-00-00 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of vision (Charlottesville, Va.) |
| PublicationTitleAlternate | J Vis |
| PublicationYear | 2016 |
| SSID | ssj0020501 |
| Score | 2.4915702 |
| Snippet | Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 11 |
| SubjectTerms | Data Interpretation, Statistical Humans Spatial Processing - physiology Visual Perception - physiology |
| Title | Four types of ensemble coding in data visualizations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26982369 https://www.proquest.com/docview/1774526604 |
| Volume | 16 |
| WOSCitedRecordID | wos000374173300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ, Directory of Open Access Journals customDbUrl: eissn: 1534-7362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020501 issn: 1534-7362 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1534-7362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020501 issn: 1534-7362 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Ni9QwFA_jKuJF_Hb8GCKIF-nYNl_NcZFdvewiuMLcSpqmUJhtl5nZuszBv92Xj3Y7O4p68FJKSJqQ9-P1vZf3e0HobRZnpckEjeyhWURNbKJCFiRiFdVpUSQpDHOXTYjT02yxkF8mk-89F6ZbiqbJrq7kxX8VNbSBsC119h_EPXwUGuAdhA5PEDs8_0rwx9DJRVZdkgZ4qebcsqN029NXbFLo-65eWzrldhSw2zdRPfHcHfTaU_l2A3ZpZ8mDLjtWzUdhhK9bVdWra9I6zHhoy2etr1Xcqt2GvLJuQNOnpal72Iwz-JW_Tl7bMkr1MKoZxyg8eXJQqDQSJGhc84u2XgvzEdrYSKV6Xbyv6bmrFcDnbB609U4t7Rv_uCHz0Pk8XOQJz1luOeG3U8GkzQU8-XE0eOoxi0OhXb9Qz7a2Az-EGXfNmN_4Js5GOXuA7gfJ4UMPiodoYppH6O5JSJ94jKjFBnbYwG2Fe2xgjw1cN9hiA-9i4wn6dnx09vFzFK7NiDRJ6CbSGlYvKzDMSk5UAdZIabShhWJGJYQQMCgrcJsNowUFhx_cKzCauSmIpFLxLCFP0UED4n2OsDFVSXlMDZOcgmeuKklKKUoBRiEhik_Ru34Xch1qyturTZb5jX2eIjx0vPBlVPa7vOm3MQcVZ8-tVGPay3WegIvCwJCM6RQ98_s7fCTlMksJly_-PMFLdM9i08fPXqGDzerSvEZ3dLep16sZuiUW2cyFZGYODD8BFQ16bg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four+types+of+ensemble+coding+in+data+visualizations&rft.jtitle=Journal+of+vision+%28Charlottesville%2C+Va.%29&rft.au=Szafir%2C+Danielle+Albers&rft.au=Haroz%2C+Steve&rft.au=Gleicher%2C+Michael&rft.au=Franconeri%2C+Steven&rft.date=2016&rft.issn=1534-7362&rft.eissn=1534-7362&rft.volume=16&rft.issue=5&rft.spage=11&rft_id=info:doi/10.1167%2F16.5.11&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_16_5_11 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-7362&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-7362&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-7362&client=summon |