Four types of ensemble coding in data visualizations

Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of vision (Charlottesville, Va.) Ročník 16; číslo 5; s. 11
Hlavní autori: Szafir, Danielle Albers, Haroz, Steve, Gleicher, Michael, Franconeri, Steven
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 2016
Predmet:
ISSN:1534-7362, 1534-7362
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.
AbstractList Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.
Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.
Author Haroz, Steve
Gleicher, Michael
Franconeri, Steven
Szafir, Danielle Albers
Author_xml – sequence: 1
  givenname: Danielle Albers
  surname: Szafir
  fullname: Szafir, Danielle Albers
  organization: Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USAdanielle.szafir@colorado.edu
– sequence: 2
  givenname: Steve
  surname: Haroz
  fullname: Haroz, Steve
  organization: Department of Psychology, Northwestern University, Evanston, IL, USAsharoz@northwestern.eduhttp://steveharoz.com/
– sequence: 3
  givenname: Michael
  surname: Gleicher
  fullname: Gleicher, Michael
  organization: Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USAgleicher@cs.wisc.eduhttp://pages.cs.wisc.edu/~gleicher/
– sequence: 4
  givenname: Steven
  surname: Franconeri
  fullname: Franconeri, Steven
  organization: Department of Psychology, Northwestern University, Evanston, IL, USAfranconeri@northwestern.eduhttp://viscog.psych.northwestern.edu/
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26982369$$D View this record in MEDLINE/PubMed
BookMark eNpd0E1Lw0AQBuBFKvZD8R9IbnpJ3dmvJEcpVoWCFz0vm81EVpLdmk2E-uuNtgXxNO_h4R1m5mTig0dCLoEuAVR2C2opx3RCZiC5SDOu2ORPnpJ5jO-UMiopnJEpU0XOuCpmRKzD0CX9bosxCXWCPmJbNpjYUDn_ljifVKY3yaeLg2ncl-ld8PGcnNamiXhxmAvyur5_WT2mm-eHp9XdJrUcRJ9aO24rapCsUtyUKssrtChKI9EA55zlvFZQoBSlYECzjEkQCkteiMKoHPiC3Ox7t134GDD2unXRYtMYj2GIGrJMSKYUFSO9OtChbLHS2861ptvp46UjSPfAdiHGDmttXf97Tt8Z12ig-ueTGpSWYxr99T9_rPwvvwFFsG9r
CitedBy_id crossref_primary_10_1109_TVCG_2022_3189883
crossref_primary_10_1109_TVCG_2022_3232959
crossref_primary_10_1109_TVCG_2024_3456385
crossref_primary_10_1016_j_cag_2024_103906
crossref_primary_10_3758_s13423_018_1525_7
crossref_primary_10_1109_TVCG_2018_2865264
crossref_primary_10_1109_TVCG_2020_3030365
crossref_primary_10_1109_TVCG_2021_3114783
crossref_primary_10_1109_TVCG_2017_2723397
crossref_primary_10_1109_TVCG_2019_2934786
crossref_primary_10_1109_TVCG_2022_3210763
crossref_primary_10_1111_cgf_13408
crossref_primary_10_1111_cgf_13409
crossref_primary_10_1146_annurev_vision_110323_110009
crossref_primary_10_1109_TVCG_2024_3456305
crossref_primary_10_3758_s13421_024_01646_0
crossref_primary_10_1109_TVCG_2024_3372620
crossref_primary_10_1186_s41235_023_00465_2
crossref_primary_10_1109_TVCG_2022_3158093
crossref_primary_10_1109_TVCG_2023_3326571
crossref_primary_10_1109_TVCG_2022_3221014
crossref_primary_10_1007_s00426_023_01883_z
crossref_primary_10_1109_TVCG_2019_2898438
crossref_primary_10_1109_TVCG_2021_3098240
crossref_primary_10_1109_TVCG_2024_3388515
crossref_primary_10_3758_s13414_020_02212_x
crossref_primary_10_1109_TVCG_2024_3456391
crossref_primary_10_3758_s13428_020_01520_2
crossref_primary_10_5406_19398298_136_1_01
crossref_primary_10_5194_nhess_20_1557_2020
crossref_primary_10_1038_s41598_023_37172_3
crossref_primary_10_1080_00087041_2024_2447628
crossref_primary_10_1111_cgf_14826
crossref_primary_10_1109_TVCG_2020_3030335
crossref_primary_10_1109_TVCG_2022_3209348
crossref_primary_10_1145_3231772
crossref_primary_10_1073_pnas_1807180116
crossref_primary_10_1109_TVCG_2018_2865240
crossref_primary_10_1109_TVCG_2021_3068337
crossref_primary_10_1109_TVCG_2019_2934801
crossref_primary_10_1186_s41235_017_0076_1
crossref_primary_10_1109_TVCG_2021_3114844
crossref_primary_10_1109_TVCG_2018_2876539
crossref_primary_10_1109_TVCG_2020_3045918
crossref_primary_10_1109_TVCG_2021_3114684
crossref_primary_10_3390_ijgi10040213
crossref_primary_10_1109_TVCG_2017_2745086
crossref_primary_10_1111_cgf_13902
crossref_primary_10_1177_09637214211009512
crossref_primary_10_1109_TVCG_2017_2744199
crossref_primary_10_1109_TVCG_2025_3541571
crossref_primary_10_3724_SP_J_1089_2022_18967
crossref_primary_10_3390_bs13100827
crossref_primary_10_1109_TVCG_2022_3192364
crossref_primary_10_1016_j_isprsjprs_2022_10_002
crossref_primary_10_3758_s13414_022_02528_w
crossref_primary_10_1016_j_asoc_2024_111651
crossref_primary_10_1109_TVCG_2020_3029413
crossref_primary_10_1109_TVCG_2020_3030439
crossref_primary_10_1109_TVCG_2022_3231230
crossref_primary_10_1177_15291006211051956
crossref_primary_10_1177_1473871618807121
crossref_primary_10_3758_s13414_019_01938_7
crossref_primary_10_1109_TVCG_2018_2864884
crossref_primary_10_1177_0956797618822798
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1167/16.5.11
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1534-7362
ExternalDocumentID 26982369
10_1167_16_5_11
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
29L
2WC
53G
5GY
5VS
AAFWJ
AAYXX
ABIVO
ACGFO
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
GX1
KQ8
M~E
OK1
OVT
P2P
RNS
RPM
TR2
TRV
W2D
W8F
XSB
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
ID FETCH-LOGICAL-c314t-cc5019f152d63ab678dece4ba5ea1333283f619e54b42107725146eb3949a6813
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374173300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-7362
IngestDate Fri Jul 11 12:25:27 EDT 2025
Thu Jan 02 22:20:38 EST 2025
Tue Nov 18 22:37:00 EST 2025
Sat Nov 29 01:35:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-cc5019f152d63ab678dece4ba5ea1333283f619e54b42107725146eb3949a6813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jov.arvojournals.org/arvo/content_public/journal/jov/935062/i1534-7362-16-5-11.pdf
PMID 26982369
PQID 1774526604
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1774526604
pubmed_primary_26982369
crossref_citationtrail_10_1167_16_5_11
crossref_primary_10_1167_16_5_11
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vision (Charlottesville, Va.)
PublicationTitleAlternate J Vis
PublicationYear 2016
SSID ssj0020501
Score 2.4915702
Snippet Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 11
SubjectTerms Data Interpretation, Statistical
Humans
Spatial Processing - physiology
Visual Perception - physiology
Title Four types of ensemble coding in data visualizations
URI https://www.ncbi.nlm.nih.gov/pubmed/26982369
https://www.proquest.com/docview/1774526604
Volume 16
WOSCitedRecordID wos000374173300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ, Directory of Open Access Journals
  customDbUrl:
  eissn: 1534-7362
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020501
  issn: 1534-7362
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1534-7362
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020501
  issn: 1534-7362
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Ni9QwFA_jKuJF_Hb8GCKIF-nYNl_NcZFdvewiuMLcSpqmUJhtl5nZuszBv92Xj3Y7O4p68FJKSJqQ9-P1vZf3e0HobRZnpckEjeyhWURNbKJCFiRiFdVpUSQpDHOXTYjT02yxkF8mk-89F6ZbiqbJrq7kxX8VNbSBsC119h_EPXwUGuAdhA5PEDs8_0rwx9DJRVZdkgZ4qebcsqN029NXbFLo-65eWzrldhSw2zdRPfHcHfTaU_l2A3ZpZ8mDLjtWzUdhhK9bVdWra9I6zHhoy2etr1Xcqt2GvLJuQNOnpal72Iwz-JW_Tl7bMkr1MKoZxyg8eXJQqDQSJGhc84u2XgvzEdrYSKV6Xbyv6bmrFcDnbB609U4t7Rv_uCHz0Pk8XOQJz1luOeG3U8GkzQU8-XE0eOoxi0OhXb9Qz7a2Az-EGXfNmN_4Js5GOXuA7gfJ4UMPiodoYppH6O5JSJ94jKjFBnbYwG2Fe2xgjw1cN9hiA-9i4wn6dnx09vFzFK7NiDRJ6CbSGlYvKzDMSk5UAdZIabShhWJGJYQQMCgrcJsNowUFhx_cKzCauSmIpFLxLCFP0UED4n2OsDFVSXlMDZOcgmeuKklKKUoBRiEhik_Ru34Xch1qyturTZb5jX2eIjx0vPBlVPa7vOm3MQcVZ8-tVGPay3WegIvCwJCM6RQ98_s7fCTlMksJly_-PMFLdM9i08fPXqGDzerSvEZ3dLep16sZuiUW2cyFZGYODD8BFQ16bg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four+types+of+ensemble+coding+in+data+visualizations&rft.jtitle=Journal+of+vision+%28Charlottesville%2C+Va.%29&rft.au=Szafir%2C+Danielle+Albers&rft.au=Haroz%2C+Steve&rft.au=Gleicher%2C+Michael&rft.au=Franconeri%2C+Steven&rft.date=2016&rft.issn=1534-7362&rft.eissn=1534-7362&rft.volume=16&rft.issue=5&rft.spage=11&rft_id=info:doi/10.1167%2F16.5.11&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_16_5_11
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-7362&client=summon