CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems

The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of grid computing Vol. 22; no. 3; p. 62
Main Authors: Nica, Robert, Götz, Stefan, Moltó, Germán
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.09.2024
Springer Nature B.V
Subjects:
ISSN:1570-7873, 1572-9184
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, especially for large-scale bioinformatics workflows running in cloud environments. Recognizing this, our study introduces a novel reference architecture, Cloud Monitoring Kit (CMK), for a multi-platform monitoring system. Our solution is designed to generate uniform, aggregated metrics from containerized workflow tasks scheduled by different WMS. Central to the proposed solution is the use of task labeling methods, which enable convenient grouping and aggregating of metrics independent of the WMS employed. This approach builds upon existing technology, providing additional benefits of modularity and capacity to seamlessly integrate with other data processing or collection systems. We have developed and released an open-source implementation of our system, which we evaluated on Amazon Web Services (AWS) using a transcriptomics data analysis workflow executed on two scientific WMS. The findings of this study indicate that CMK provides valuable insights into resource utilization. In doing so, it paves the way for more efficient management of resources in containerized scientific workflows running in public cloud environments, and it provides a foundation for optimizing task configurations, reducing costs, and enhancing scheduling decisions. Overall, our solution addresses the immediate needs of bioinformatics workflows and offers a scalable and adaptable framework for future advancements in cloud-based scientific computing.
AbstractList The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, especially for large-scale bioinformatics workflows running in cloud environments. Recognizing this, our study introduces a novel reference architecture, Cloud Monitoring Kit (CMK), for a multi-platform monitoring system. Our solution is designed to generate uniform, aggregated metrics from containerized workflow tasks scheduled by different WMS. Central to the proposed solution is the use of task labeling methods, which enable convenient grouping and aggregating of metrics independent of the WMS employed. This approach builds upon existing technology, providing additional benefits of modularity and capacity to seamlessly integrate with other data processing or collection systems. We have developed and released an open-source implementation of our system, which we evaluated on Amazon Web Services (AWS) using a transcriptomics data analysis workflow executed on two scientific WMS. The findings of this study indicate that CMK provides valuable insights into resource utilization. In doing so, it paves the way for more efficient management of resources in containerized scientific workflows running in public cloud environments, and it provides a foundation for optimizing task configurations, reducing costs, and enhancing scheduling decisions. Overall, our solution addresses the immediate needs of bioinformatics workflows and offers a scalable and adaptable framework for future advancements in cloud-based scientific computing.
ArticleNumber 62
Author Götz, Stefan
Moltó, Germán
Nica, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Nica
  fullname: Nica, Robert
  email: bogni@doctor.upv.es
  organization: Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València, BioBam Bioinformatics S.L
– sequence: 2
  givenname: Stefan
  surname: Götz
  fullname: Götz, Stefan
  organization: BioBam Bioinformatics S.L
– sequence: 3
  givenname: Germán
  surname: Moltó
  fullname: Moltó, Germán
  email: gmolto@dsic.upv.es
  organization: Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València
BookMark eNp9kE9PAjEQxRuDiYB-AU9NPFen7e5O8aaIfyLERCUem7LbxUVosV008OldwMSbp5lk3nuT9-uQlvPOEnLK4ZwD4EXkgEIyEAmDHiKyzQFp8xQF63GVtHY7MFQoj0gnxhmASBWINpn0R4-XdODejcsrN6XPNvpVyC0dRzO1dORdVfuwvZg8-BjpTfVlQ7T0uvKVK31YmLrKI33z4aOc-286Mq4xLqyr6cs61nYRj8lhaebRnvzOLhnfDl7792z4dPfQvxqyXPKkZrlCCyClwgJFNimMMGnRK1JrMDHcQKmEBCzzDHMzsZkEozhOMC049Kxpjl1yts9dBv-5srHWs6aKa15qCQpBCsWzRiX2ql2dYEu9DNXChLXmoLcs9Z6lbljqHUu9aUxyb4rLLQsb_qL_cf0ALtF6dw
Cites_doi 10.7490/F1000RESEARCH.1114634.1
10.12688/f1000research.10137.1
10.1007/10968987_3
10.1109/MCSE.2017.2421459
10.1109/ISPASS.2015.7095802
10.1101/gr.4086505
10.1038/s41592-021-01254-9
10.1038/533452A
10.1145/2452376.2452478
10.1007/978-3-030-24322-7_59/FIGURE
10.3390/LIFE12050648
10.1093/GIGASCIENCE/GIZ095
10.5281/ZENODO.4605654
10.1093/GIGASCIENCE/GIZ052
10.1201/9781003441601-2
10.1186/1471-2105-9-82/TABLES/1
10.1007/S10723-018-09471-X/METRICS
10.1109/BIGDATA55660.2022.10020864
10.6084/M9.FIGSHARE.3115156
10.1038/NBT.3820
10.1093/NAR/GKN176
10.1109/ISCON47742.2019.9036238
10.1038/nbt.3772
10.1007/S00778-017-0486-1
10.1109/TENCON.2017.8228349
10.1093/BIOINFORMATICS/BTZ054
10.1162/DINT_A_00033
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10723-024-09777-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1572-9184
ExternalDocumentID 10_1007_s10723_024_09777_z
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  grantid: 101058386
  funderid: http://dx.doi.org/10.13039/100019180
– fundername: Valencian Innovation Agency
  grantid: INNTA3/2021/5
– fundername: MICIU/AEI/10.13039/501100011033
  grantid: PID2020-113126RB-I00
GroupedDBID -59
-5G
-BR
-D3
-D4
-D8
-DT
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KZ1
LAK
LLZTM
LMP
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c314t-c87e003387d726bda2a5d9d5ea74a1a0f82307fc67cabe630a817b75d109ea823
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001282129900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-7873
IngestDate Wed Nov 05 04:10:03 EST 2025
Sat Nov 29 03:23:27 EST 2025
Fri Feb 21 02:38:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Cloud computing
High-throughput computing
Bioinformatics infrastructure
Monitoring
Workflow management systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c87e003387d726bda2a5d9d5ea74a1a0f82307fc67cabe630a817b75d109ea823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10723-024-09777-z
PQID 3087032816
PQPubID 2043852
ParticipantIDs proquest_journals_3087032816
crossref_primary_10_1007_s10723_024_09777_z
springer_journals_10_1007_s10723_024_09777_z
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle From Grids to Cloud Federations
PublicationTitle Journal of grid computing
PublicationTitleAbbrev J Grid Computing
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Amazon Web Services (AWS). https://aws.amazon.com/ (2023)
KhanFZSoiland-ReyesSSinnottROLonieAGobleCCrusoeMRSharing interoperable workflow provenance: A review of best practices and their practical application in CWLProvGigaSci201981112710.1093/GIGASCIENCE/GIZ095
Infrastructure As Code Provisioning Tool - AWS CloudFormation - AWS. https://aws.amazon.com/cloudformation/ (2024)
Bader, J., Witzke, J., Becker, S., Loser, A., Lehmann, F., Doehler, L., Vu, A.D., Kao, O.: Towards advanced monitoring for scientific workflows. Proceedings - 2022 IEEE International Conference on Big Data. Big Data 2709–2715 (2022). https://doi.org/10.1109/BIGDATA55660.2022.10020864
FourmentMGillingsMRA comparison of common programming languages used in bioinformaticsBMC Bioinform.2008911910.1186/1471-2105-9-82/TABLES/1
HaleJSLiLRichardsonCNWellsGNContainers for portable, productive, and performant scientific computingComput. Sci. Eng.2017196405010.1109/MCSE.2017.2421459
Telegraf | InfluxData. https://influxdata.com/telegraf (2024)
YooABJetteMAGrondonaMSLURM: Simple linux utility for resource managementLect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)20032862446010.1007/10968987_3
GötzSGarcía-GómezJMTerolJWilliamsTDNagarajSHNuedaMJRoblesMTalónMDopazoJConesaAHigh-throughput functional annotation and data mining with the Blast2GO suiteNucleic Acids Res.200836103420343510.1093/NAR/GKN176
HerschelMDiestelkämperRBen LahmarHA survey on provenance: What for? What form? What from?VLDB J.201726688190610.1007/S00778-017-0486-1
Google Cloud. https://cloud.google.com/ (2023)
Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. ISPASS 2015 - IEEE International Symposium on Performance Analysis of Systems and Software, 171–172 (2015). https://doi.org/10.1109/ISPASS.2015.7095802
O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti, V.: The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Research 6:52 6, 52 (2017). https://doi.org/10.12688/f1000research.10137.1
Funnel. https://ohsu-comp-bio.github.io/funnel/ (2023)
Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna, M., Birger, C., Kent, W.J., Patterson, D.A., Joseph, A.D., Zhu, J., Zaranek, S., Getz, G., Haussler, D., Paten, B.: Toil enables reproducible, open source, big biomedical data analyses. Nature Publishing Group (2017). https://doi.org/10.1038/nbt.3772
TyryshkinaACoraorNNekrutenkoAPredicting runtimes of bioinformatics tools based on historical data: Five years of Galaxy usageBioinformatics201935183453346010.1093/BIOINFORMATICS/BTZ054
Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modelling provenance metadata. ACM Int. Conf. Proc. Ser. 773–776 (2013). https://doi.org/10.1145/2452376.2452478
WES Specification. https://github.com/ga4gh/workflow-execution-service-schemas (2023)
chanzuckerberg/miniwdl: Workflow Description Language developer tools & local runner. https://github.com/chanzuckerberg/miniwdl (2023)
BakerMPennyDIs there a reproducibility crisis?Nature2016533760445245410.1038/533452A
Di TommasoPChatzouMFlodenEWBarjaPPPalumboENotredameCNextflow enables reproducible computational workflowsNat. Biotechnol.201735431631910.1038/NBT.3820
Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams, A., Eguinoa, I., Droesbeke, B., Leo, S., Pireddu, L., Rodríguez-Navas, L., Fernández, J.M., Capella-Gutierrez, S., Ménager, H., Grüning, B., Serrano-Solano, B., Ewels, P., Coppens, F.: Implementing FAIR digital objects in the EOSC-Life workflow collaboratory (2021). https://doi.org/10.5281/ZENODO.4605654 . https://zenodo.org/record/4605654
BirjeMNBullaCCommercial and open source cloud monitoring tools: A reviewLearn. Anal. Intell. Syst.2020348049010.1007/978-3-030-24322-7_59/FIGURE
Genomics Workflows on AWS. https://docs.opendata.aws/genomics-workflows/quick-start.html (2023)
Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow Language, v1.0. Figshare (2016). https://doi.org/10.6084/M9.FIGSHARE.3115156
Google Batch. https://cloud.google.com/batch/ (2023)
OmicsBox - Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox/ (2023)
OpenTofu. https://opentofu.org/ (2024)
Azure Batch. https://azure.microsoft.com/en-us/products/batch/ (2023)
Voss, K., Auwera, G.V.d., Gentry, J., Voss, K., Auwera, G., Gentry, J.: Full-stack genomics pipelining with GATK4 + WDL + Cromwell. ISCB Comm. J. 6 (2017). https://doi.org/10.7490/F1000RESEARCH.1114634.1
Microsoft Azure. https://azure.microsoft.com/ (2023)
WrattenLWilmAGökeJReproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managersNat. Methods202118101161116810.1038/s41592-021-01254-9
InfluxDB Cloud | InfluxData. https://www.influxdata.com/products/influxdb-cloud/ (2023)
TES specification. https://github.com/ga4gh/task-execution-schemas (2023)
AWS Batch. https://aws.amazon.com/batch/ (2023)
HashiCorp State of Cloud Strategy Survey. https://www.hashicorp.com/state-of-the-cloud (2022)
Cloud monitoring | Dynatrace. https://www.dynatrace.com/platform/cloud-monitoring/ (2023)
IEEE SA - IEEE 1003.1-2001 (POSIX). https://standards.ieee.org/ieee/1003.1/1389/ (2021)
Giorgi, F.M., Ceraolo, C., Mercatelli, D.: The R Language: An Engine for Bioinformatics and Data Science. Life (Basel, Switzerland) 12(5) (2022). https://doi.org/10.3390/LIFE12050648
Bage, A.P., Saxena, S., Singh, Y.: A brief review on lightweight practice of docker vulnerabilities. Software Engineering Approaches to Enable Digital Transformation Technologies 18–24 (2023). https://doi.org/10.1201/9781003441601-2
Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic. https://www.elastic.co/elasticsearch (2024)
da Rosa RighiRLehmannMGomesMMNobreJCCostaCARigoSJLenaMMohrRFOliveiraLRBA survey on global management view: toward combining system monitoring, resource management, and load predictionJ. Grid Comput.201917347350210.1007/S10723-018-09471-X/METRICS
OhtaTTanjoTOgasawaraOAccumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selectionGigaScience20198411110.1093/GIGASCIENCE/GIZ052
Grafana: The open observability platform | Grafana Labs. https://grafana.com/ (2024)
Fahad, A.M., Ahmed, A.A., Kahar, M.N.M.: The importance of monitoring cloud computing: An intensive review. IEEE Region 10 Annual International Conference, Proceedings/TENCON 2017-December, 2858–2863 (2017). https://doi.org/10.1109/TENCON.2017.8228349
Cloud Monitoring as a Service | Datadog. https://www.datadoghq.com/ (2023)
Nomad by HashiCorp. https://www.nomadproject.io/ (2024)
GobleCCohen-BoulakiaSSoiland-ReyesSGarijoDGilYCrusoeMRPetersKSchoberDFAIR Computational workflowsData Intell.202021–210812110.1162/DINT_A_00033
GiardineBRiemerCHardisonRCBurhansRElnitskiLShahPZhangYBlankenbergDAlbertITaylorJMillerWKentWJNekrutenkoAGalaxy: A platform for interactive large-scale genome analysisGenome Res.200515101451145510.1101/gr.4086505
What is Amazon SNS? - Amazon Simple Notification Service. https://docs.aws.amazon.com/sns/latest/dg/welcome.html (2024)
Siddiqui, T., Siddiqui, S.A., Khan, N.A.: Comprehensive Analysis of Container Technology. 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, 218–223 (2019). https://doi.org/10.1109/ISCON47742.2019.9036238
Fully Managed Container Solution - Amazon Elastic Container Service (Amazon ECS) - Amazon Web Services. https://aws.amazon.com/ecs/ (2024)
9777_CR41
9777_CR40
9777_CR43
9777_CR42
9777_CR45
9777_CR44
9777_CR47
9777_CR49
9777_CR48
9777_CR50
9777_CR52
9777_CR10
A Tyryshkina (9777_CR30) 2019; 35
9777_CR19
9777_CR11
M Herschel (9777_CR13) 2017; 26
9777_CR16
9777_CR15
9777_CR18
9777_CR17
9777_CR7
9777_CR6
FZ Khan (9777_CR14) 2019; 8
9777_CR4
9777_CR3
9777_CR2
9777_CR1
9777_CR21
T Ohta (9777_CR34) 2019; 8
M Fourment (9777_CR8) 2008; 9
R da Rosa Righi (9777_CR33) 2019; 17
MN Birje (9777_CR32) 2020; 3
JS Hale (9777_CR5) 2017; 19
P Di Tommaso (9777_CR20) 2017; 35
M Baker (9777_CR9) 2016; 533
9777_CR23
9777_CR22
9777_CR25
AB Yoo (9777_CR28) 2003; 2862
9777_CR27
9777_CR26
9777_CR29
9777_CR31
B Giardine (9777_CR24) 2005; 15
C Goble (9777_CR12) 2020; 2
L Wratten (9777_CR46) 2021; 18
S Götz (9777_CR51) 2008; 36
9777_CR36
9777_CR35
9777_CR38
9777_CR37
9777_CR39
References_xml – reference: Voss, K., Auwera, G.V.d., Gentry, J., Voss, K., Auwera, G., Gentry, J.: Full-stack genomics pipelining with GATK4 + WDL + Cromwell. ISCB Comm. J. 6 (2017). https://doi.org/10.7490/F1000RESEARCH.1114634.1
– reference: chanzuckerberg/miniwdl: Workflow Description Language developer tools & local runner. https://github.com/chanzuckerberg/miniwdl (2023)
– reference: Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. ISPASS 2015 - IEEE International Symposium on Performance Analysis of Systems and Software, 171–172 (2015). https://doi.org/10.1109/ISPASS.2015.7095802
– reference: OhtaTTanjoTOgasawaraOAccumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selectionGigaScience20198411110.1093/GIGASCIENCE/GIZ052
– reference: InfluxDB Cloud | InfluxData. https://www.influxdata.com/products/influxdb-cloud/ (2023)
– reference: Google Batch. https://cloud.google.com/batch/ (2023)
– reference: WrattenLWilmAGökeJReproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managersNat. Methods202118101161116810.1038/s41592-021-01254-9
– reference: IEEE SA - IEEE 1003.1-2001 (POSIX). https://standards.ieee.org/ieee/1003.1/1389/ (2021)
– reference: GiardineBRiemerCHardisonRCBurhansRElnitskiLShahPZhangYBlankenbergDAlbertITaylorJMillerWKentWJNekrutenkoAGalaxy: A platform for interactive large-scale genome analysisGenome Res.200515101451145510.1101/gr.4086505
– reference: Grafana: The open observability platform | Grafana Labs. https://grafana.com/ (2024)
– reference: Fahad, A.M., Ahmed, A.A., Kahar, M.N.M.: The importance of monitoring cloud computing: An intensive review. IEEE Region 10 Annual International Conference, Proceedings/TENCON 2017-December, 2858–2863 (2017). https://doi.org/10.1109/TENCON.2017.8228349
– reference: Genomics Workflows on AWS. https://docs.opendata.aws/genomics-workflows/quick-start.html (2023)
– reference: Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna, M., Birger, C., Kent, W.J., Patterson, D.A., Joseph, A.D., Zhu, J., Zaranek, S., Getz, G., Haussler, D., Paten, B.: Toil enables reproducible, open source, big biomedical data analyses. Nature Publishing Group (2017). https://doi.org/10.1038/nbt.3772
– reference: AWS Batch. https://aws.amazon.com/batch/ (2023)
– reference: da Rosa RighiRLehmannMGomesMMNobreJCCostaCARigoSJLenaMMohrRFOliveiraLRBA survey on global management view: toward combining system monitoring, resource management, and load predictionJ. Grid Comput.201917347350210.1007/S10723-018-09471-X/METRICS
– reference: Di TommasoPChatzouMFlodenEWBarjaPPPalumboENotredameCNextflow enables reproducible computational workflowsNat. Biotechnol.201735431631910.1038/NBT.3820
– reference: HerschelMDiestelkämperRBen LahmarHA survey on provenance: What for? What form? What from?VLDB J.201726688190610.1007/S00778-017-0486-1
– reference: Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic. https://www.elastic.co/elasticsearch (2024)
– reference: Fully Managed Container Solution - Amazon Elastic Container Service (Amazon ECS) - Amazon Web Services. https://aws.amazon.com/ecs/ (2024)
– reference: Infrastructure As Code Provisioning Tool - AWS CloudFormation - AWS. https://aws.amazon.com/cloudformation/ (2024)
– reference: Funnel. https://ohsu-comp-bio.github.io/funnel/ (2023)
– reference: Giorgi, F.M., Ceraolo, C., Mercatelli, D.: The R Language: An Engine for Bioinformatics and Data Science. Life (Basel, Switzerland) 12(5) (2022). https://doi.org/10.3390/LIFE12050648
– reference: Google Cloud. https://cloud.google.com/ (2023)
– reference: YooABJetteMAGrondonaMSLURM: Simple linux utility for resource managementLect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)20032862446010.1007/10968987_3
– reference: GötzSGarcía-GómezJMTerolJWilliamsTDNagarajSHNuedaMJRoblesMTalónMDopazoJConesaAHigh-throughput functional annotation and data mining with the Blast2GO suiteNucleic Acids Res.200836103420343510.1093/NAR/GKN176
– reference: What is Amazon SNS? - Amazon Simple Notification Service. https://docs.aws.amazon.com/sns/latest/dg/welcome.html (2024)
– reference: Bader, J., Witzke, J., Becker, S., Loser, A., Lehmann, F., Doehler, L., Vu, A.D., Kao, O.: Towards advanced monitoring for scientific workflows. Proceedings - 2022 IEEE International Conference on Big Data. Big Data 2709–2715 (2022). https://doi.org/10.1109/BIGDATA55660.2022.10020864
– reference: HashiCorp State of Cloud Strategy Survey. https://www.hashicorp.com/state-of-the-cloud (2022)
– reference: Azure Batch. https://azure.microsoft.com/en-us/products/batch/ (2023)
– reference: OpenTofu. https://opentofu.org/ (2024)
– reference: HaleJSLiLRichardsonCNWellsGNContainers for portable, productive, and performant scientific computingComput. Sci. Eng.2017196405010.1109/MCSE.2017.2421459
– reference: Cloud monitoring | Dynatrace. https://www.dynatrace.com/platform/cloud-monitoring/ (2023)
– reference: O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti, V.: The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Research 6:52 6, 52 (2017). https://doi.org/10.12688/f1000research.10137.1
– reference: BirjeMNBullaCCommercial and open source cloud monitoring tools: A reviewLearn. Anal. Intell. Syst.2020348049010.1007/978-3-030-24322-7_59/FIGURE
– reference: Microsoft Azure. https://azure.microsoft.com/ (2023)
– reference: Siddiqui, T., Siddiqui, S.A., Khan, N.A.: Comprehensive Analysis of Container Technology. 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, 218–223 (2019). https://doi.org/10.1109/ISCON47742.2019.9036238
– reference: Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow Language, v1.0. Figshare (2016). https://doi.org/10.6084/M9.FIGSHARE.3115156
– reference: Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modelling provenance metadata. ACM Int. Conf. Proc. Ser. 773–776 (2013). https://doi.org/10.1145/2452376.2452478
– reference: GobleCCohen-BoulakiaSSoiland-ReyesSGarijoDGilYCrusoeMRPetersKSchoberDFAIR Computational workflowsData Intell.202021–210812110.1162/DINT_A_00033
– reference: KhanFZSoiland-ReyesSSinnottROLonieAGobleCCrusoeMRSharing interoperable workflow provenance: A review of best practices and their practical application in CWLProvGigaSci201981112710.1093/GIGASCIENCE/GIZ095
– reference: Telegraf | InfluxData. https://influxdata.com/telegraf (2024)
– reference: Cloud Monitoring as a Service | Datadog. https://www.datadoghq.com/ (2023)
– reference: WES Specification. https://github.com/ga4gh/workflow-execution-service-schemas (2023)
– reference: BakerMPennyDIs there a reproducibility crisis?Nature2016533760445245410.1038/533452A
– reference: Bage, A.P., Saxena, S., Singh, Y.: A brief review on lightweight practice of docker vulnerabilities. Software Engineering Approaches to Enable Digital Transformation Technologies 18–24 (2023). https://doi.org/10.1201/9781003441601-2
– reference: TyryshkinaACoraorNNekrutenkoAPredicting runtimes of bioinformatics tools based on historical data: Five years of Galaxy usageBioinformatics201935183453346010.1093/BIOINFORMATICS/BTZ054
– reference: Nomad by HashiCorp. https://www.nomadproject.io/ (2024)
– reference: OmicsBox - Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox/ (2023)
– reference: Amazon Web Services (AWS). https://aws.amazon.com/ (2023)
– reference: Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams, A., Eguinoa, I., Droesbeke, B., Leo, S., Pireddu, L., Rodríguez-Navas, L., Fernández, J.M., Capella-Gutierrez, S., Ménager, H., Grüning, B., Serrano-Solano, B., Ewels, P., Coppens, F.: Implementing FAIR digital objects in the EOSC-Life workflow collaboratory (2021). https://doi.org/10.5281/ZENODO.4605654 . https://zenodo.org/record/4605654
– reference: TES specification. https://github.com/ga4gh/task-execution-schemas (2023)
– reference: FourmentMGillingsMRA comparison of common programming languages used in bioinformaticsBMC Bioinform.2008911910.1186/1471-2105-9-82/TABLES/1
– ident: 9777_CR23
– ident: 9777_CR42
– ident: 9777_CR11
  doi: 10.7490/F1000RESEARCH.1114634.1
– ident: 9777_CR27
– ident: 9777_CR16
  doi: 10.12688/f1000research.10137.1
– volume: 2862
  start-page: 44
  year: 2003
  ident: 9777_CR28
  publication-title: Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  doi: 10.1007/10968987_3
– volume: 19
  start-page: 40
  issue: 6
  year: 2017
  ident: 9777_CR5
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2017.2421459
– ident: 9777_CR6
  doi: 10.1109/ISPASS.2015.7095802
– ident: 9777_CR37
– ident: 9777_CR52
– ident: 9777_CR3
– volume: 15
  start-page: 1451
  issue: 10
  year: 2005
  ident: 9777_CR24
  publication-title: Genome Res.
  doi: 10.1101/gr.4086505
– ident: 9777_CR22
– volume: 18
  start-page: 1161
  issue: 10
  year: 2021
  ident: 9777_CR46
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01254-9
– ident: 9777_CR43
– ident: 9777_CR39
– ident: 9777_CR47
– volume: 533
  start-page: 452
  issue: 7604
  year: 2016
  ident: 9777_CR9
  publication-title: Nature
  doi: 10.1038/533452A
– ident: 9777_CR26
– ident: 9777_CR15
  doi: 10.1145/2452376.2452478
– volume: 3
  start-page: 480
  year: 2020
  ident: 9777_CR32
  publication-title: Learn. Anal. Intell. Syst.
  doi: 10.1007/978-3-030-24322-7_59/FIGURE
– ident: 9777_CR7
  doi: 10.3390/LIFE12050648
– ident: 9777_CR29
– ident: 9777_CR36
– volume: 8
  start-page: 1
  issue: 11
  year: 2019
  ident: 9777_CR14
  publication-title: GigaSci
  doi: 10.1093/GIGASCIENCE/GIZ095
– ident: 9777_CR17
  doi: 10.5281/ZENODO.4605654
– ident: 9777_CR21
– volume: 8
  start-page: 1
  issue: 4
  year: 2019
  ident: 9777_CR34
  publication-title: GigaScience
  doi: 10.1093/GIGASCIENCE/GIZ052
– ident: 9777_CR49
  doi: 10.1201/9781003441601-2
– ident: 9777_CR48
– ident: 9777_CR19
– ident: 9777_CR44
– volume: 9
  start-page: 1
  issue: 1
  year: 2008
  ident: 9777_CR8
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-82/TABLES/1
– ident: 9777_CR25
– ident: 9777_CR40
– volume: 17
  start-page: 473
  issue: 3
  year: 2019
  ident: 9777_CR33
  publication-title: J. Grid Comput.
  doi: 10.1007/S10723-018-09471-X/METRICS
– ident: 9777_CR50
– ident: 9777_CR35
  doi: 10.1109/BIGDATA55660.2022.10020864
– ident: 9777_CR10
  doi: 10.6084/M9.FIGSHARE.3115156
– ident: 9777_CR1
– ident: 9777_CR45
– volume: 35
  start-page: 316
  issue: 4
  year: 2017
  ident: 9777_CR20
  publication-title: Nat. Biotechnol.
  doi: 10.1038/NBT.3820
– volume: 36
  start-page: 3420
  issue: 10
  year: 2008
  ident: 9777_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/NAR/GKN176
– ident: 9777_CR4
  doi: 10.1109/ISCON47742.2019.9036238
– ident: 9777_CR18
  doi: 10.1038/nbt.3772
– ident: 9777_CR41
– volume: 26
  start-page: 881
  issue: 6
  year: 2017
  ident: 9777_CR13
  publication-title: VLDB J.
  doi: 10.1007/S00778-017-0486-1
– ident: 9777_CR31
  doi: 10.1109/TENCON.2017.8228349
– volume: 35
  start-page: 3453
  issue: 18
  year: 2019
  ident: 9777_CR30
  publication-title: Bioinformatics
  doi: 10.1093/BIOINFORMATICS/BTZ054
– ident: 9777_CR38
– ident: 9777_CR2
– volume: 2
  start-page: 108
  issue: 1–2
  year: 2020
  ident: 9777_CR12
  publication-title: Data Intell.
  doi: 10.1162/DINT_A_00033
SSID ssj0025802
Score 2.3607044
Snippet The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 62
SubjectTerms Bioinformatics
Cloud computing
Computer Science
Configuration management
Cost analysis
Data analysis
Data processing
Management of Computing and Information Systems
Management systems
Modularity
Monitoring
Open source software
Processor Architectures
Resource scheduling
Resource utilization
Task scheduling
User Interfaces and Human Computer Interaction
Web services
Workflow management systems
Workflow software
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl400DSr7TedG4I6hB1Y7eQpqkOpJVtKuyvN2lTq6IHPack4eW9vu_fAzgUKaUiDiPsC-2uaqbwcUSSFDMltXoMvEgWwZzhFev3w9EourFNYdOq2r1KSRZ_6k_NbswxOUcPE220MDxfhCWt7kIzsOH2bvjhZvlhWWnoM1Mrx1zbKvPzHl_VUW1jfkuLFtqm1_zfPddg1VqX6LRkh3VYUNkGNKvJDcgK8ibEnevLE9TNHg3aRvaAqiA-Gpg6M1QKujkVieLe6Lwo31DobJxbqFUD74xMqD19yt9QXUWDLAb6Fgx63fvOBbbTFrB0qTfDMmTKTHYLWcKcIE6EI_wkSnwlmCeoIKlJybFUBkyKWAUuESFlMfMTSiIl9OI2NLI8UzuAYseAHWktoI0x7f65sZfSxFUpkdqei6TbgqOK6Py5BNXgNXyyIR_X5OMF-fi8Be3qXbgVsCk3QIYGCpAGLTiu3qFe_n233b99vgcrTvmUmNA2NGaTF7UPy_J1Np5ODgrGeweOwdQ1
  priority: 102
  providerName: Springer Nature
Title CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems
URI https://link.springer.com/article/10.1007/s10723-024-09777-z
https://www.proquest.com/docview/3087032816
Volume 22
WOSCitedRecordID wos001282129900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: P5Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: BENPR
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-o8-DFb3E6JQdvGmz6ldaLOJ0I6hjqxvBS0jTVgbTTTQX_evPa1KKgFy-9BEL6PvI-83sAeyJlTMRBSD2hw1UtFB4NrSSlXEltHn03lEUyZ3DFu91gOAx7JuE2MW2V1Z1YXNRJLjFHfojIdYj9xvzj8TPFqVFYXTUjNGahgSgJOLqh591_BVxeUPYcehy75rhjHs2Yp3PcxgqmSy3tAnH68d0w1d7mjwJpYXfOl_574mVYNB4nOSlFZAVmVLYKS9U0B2KUew3i0-vLI9LJHhGBI3sgVWKf9LH3jJTKj2ckovgDcla0dCjSHuUGfhUhnwmm39On_J3UnTXE4KKvQ_-8c3d6Qc0EBiod5k6pDLjCaW8BT7jtx4mwhZeEiacEdwUTVoplOp5Kn0sRK9-xRMB4zL2EWaESenED5rI8U5tAYhsBkLRl0A6aDgmd2E1Z4qjUktrHC6XThP2K_NG4BNqIakhlZFakmRUVzIo-mtCqaB4ZpZtENcGbcFBxrV7-fbetv3fbhgW7FBRqsRbMTV9e1Q7My7fpaPKyC412p9u72S1ET39vbgefhofgCw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5EBb1Yn1itugc96WI2r00EEV-l0lo8qBQvcbPZqCCpttWiP8rf6E4eBgW99eA5sJCZb-exM_MNwKaIGROh51NH6HRVg8KhvhHFlCup3aNr-zJ9zLlu8Xbb63T8izH4KGZhsK2ysImpoY66Et_Id5G5DrnfmHvw9ExxaxRWV4sVGhksmuptqFO2_v7ZidbvlmnWTy-PGzTfKkClxewBlR5XuMHM4xE33TASpnAiP3KU4LZgwoix9MRj6XIpQuVahvAYD7kTMcNXwkOiA23yJ2zbNPAWXTg3Xwme42U9jg7HLj1u5UM6-ageN7FialNDh1ycvn93hGV0-6Mgm_q5euW_SWgWZvKImhxmV2AOxlQyD5ViWwXJjdcChMfnzT1ymtwjw0hyR4rCBbnC3jqSGTeUCRGpxMhJ2rKiyNFDN6eXRUprguWF-LE7JGXnEMl53xfhaiR_ugTjSTdRy0BCEwmetOfTAahOea3QjllkqdiQOob1pVWF7ULdwVNGJBKUlNEIjkCDI0jBEbxXoVboOMiNSj8oFVyFnQIl5effT1v5-7QNmGpcnreC1lm7uQrTZgZSarAajA96L2oNJuXr4KHfW0_hTuB21Oj5BI-1Omc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFfFiXbFaNQdvGjqZLTPetAtKayloS29DJsloQaalHRX6601msVX0IJ4zhMx7Sd72vS8A5ywihIWejx2mwlW1KRzsGyLCVHJlHl3b52kyZ9Ch3a43HPq9pS7-FO1elCSzngbN0hQntYmIakuNb9TU9UcbG8qBoXi-Cmu2BtLreP1h8BlyOV6GOnSoxs1RK2-b-XmOr6Zp4W9-K5GmlqdV_v-at2Er9zrRdbZNdmBFxrtQLl50QPkB34Owft--Qs34WbNwxE-oSO6jvsafoewC0CtALP0H1EhhHRLdjMY5BaumfUY6BR-9jN_RAl2Dcm70fei3mo_1W5y_woC5RewEc49K_eKbRwU13VAwkznCF45k1GaEGZEu1dGIu5SzULqWwTxCQ-oIYviSqcEDKMXjWB4CCk1NgqSsg3LSVFhohXZEhCUjgys_z-dWBS4KBQSTjGwjWNAqa_EFSnxBKr5gXoFqoaMgP3izQBMcaopA4lbgstDJYvj32Y7-9vkZbPQaraBz120fw6aZaRUbpAqlZPoqT2CdvyWj2fQ03Y8fwzvf_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMK%3A+Enhancing+Resource+Usage+Monitoring+across+Diverse+Bioinformatics+Workflow+Management+Systems&rft.jtitle=Journal+of+grid+computing&rft.au=Nica%2C+Robert&rft.au=G%C3%B6tz%2C+Stefan&rft.au=Molt%C3%B3%2C+Germ%C3%A1n&rft.date=2024-09-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1007%2Fs10723-024-09777-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10723_024_09777_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon