CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems
The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, e...
Uloženo v:
| Vydáno v: | Journal of grid computing Ročník 22; číslo 3; s. 62 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.09.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1570-7873, 1572-9184 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, especially for large-scale bioinformatics workflows running in cloud environments. Recognizing this, our study introduces a novel reference architecture, Cloud Monitoring Kit (CMK), for a multi-platform monitoring system. Our solution is designed to generate uniform, aggregated metrics from containerized workflow tasks scheduled by different WMS. Central to the proposed solution is the use of task labeling methods, which enable convenient grouping and aggregating of metrics independent of the WMS employed. This approach builds upon existing technology, providing additional benefits of modularity and capacity to seamlessly integrate with other data processing or collection systems. We have developed and released an open-source implementation of our system, which we evaluated on Amazon Web Services (AWS) using a transcriptomics data analysis workflow executed on two scientific WMS. The findings of this study indicate that CMK provides valuable insights into resource utilization. In doing so, it paves the way for more efficient management of resources in containerized scientific workflows running in public cloud environments, and it provides a foundation for optimizing task configurations, reducing costs, and enhancing scheduling decisions. Overall, our solution addresses the immediate needs of bioinformatics workflows and offers a scalable and adaptable framework for future advancements in cloud-based scientific computing. |
|---|---|
| AbstractList | The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source bioinformatics ecosystem. Efficient resource utilization in these systems is crucial for keeping costs low and improving processing times, especially for large-scale bioinformatics workflows running in cloud environments. Recognizing this, our study introduces a novel reference architecture, Cloud Monitoring Kit (CMK), for a multi-platform monitoring system. Our solution is designed to generate uniform, aggregated metrics from containerized workflow tasks scheduled by different WMS. Central to the proposed solution is the use of task labeling methods, which enable convenient grouping and aggregating of metrics independent of the WMS employed. This approach builds upon existing technology, providing additional benefits of modularity and capacity to seamlessly integrate with other data processing or collection systems. We have developed and released an open-source implementation of our system, which we evaluated on Amazon Web Services (AWS) using a transcriptomics data analysis workflow executed on two scientific WMS. The findings of this study indicate that CMK provides valuable insights into resource utilization. In doing so, it paves the way for more efficient management of resources in containerized scientific workflows running in public cloud environments, and it provides a foundation for optimizing task configurations, reducing costs, and enhancing scheduling decisions. Overall, our solution addresses the immediate needs of bioinformatics workflows and offers a scalable and adaptable framework for future advancements in cloud-based scientific computing. |
| ArticleNumber | 62 |
| Author | Götz, Stefan Moltó, Germán Nica, Robert |
| Author_xml | – sequence: 1 givenname: Robert surname: Nica fullname: Nica, Robert email: bogni@doctor.upv.es organization: Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València, BioBam Bioinformatics S.L – sequence: 2 givenname: Stefan surname: Götz fullname: Götz, Stefan organization: BioBam Bioinformatics S.L – sequence: 3 givenname: Germán surname: Moltó fullname: Moltó, Germán email: gmolto@dsic.upv.es organization: Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València |
| BookMark | eNp9kE9PAjEQxRuDiYB-AU9NPFen7e5O8aaIfyLERCUem7LbxUVosV008OldwMSbp5lk3nuT9-uQlvPOEnLK4ZwD4EXkgEIyEAmDHiKyzQFp8xQF63GVtHY7MFQoj0gnxhmASBWINpn0R4-XdODejcsrN6XPNvpVyC0dRzO1dORdVfuwvZg8-BjpTfVlQ7T0uvKVK31YmLrKI33z4aOc-286Mq4xLqyr6cs61nYRj8lhaebRnvzOLhnfDl7792z4dPfQvxqyXPKkZrlCCyClwgJFNimMMGnRK1JrMDHcQKmEBCzzDHMzsZkEozhOMC049Kxpjl1yts9dBv-5srHWs6aKa15qCQpBCsWzRiX2ql2dYEu9DNXChLXmoLcs9Z6lbljqHUu9aUxyb4rLLQsb_qL_cf0ALtF6dw |
| Cites_doi | 10.7490/F1000RESEARCH.1114634.1 10.12688/f1000research.10137.1 10.1007/10968987_3 10.1109/MCSE.2017.2421459 10.1109/ISPASS.2015.7095802 10.1101/gr.4086505 10.1038/s41592-021-01254-9 10.1038/533452A 10.1145/2452376.2452478 10.1007/978-3-030-24322-7_59/FIGURE 10.3390/LIFE12050648 10.1093/GIGASCIENCE/GIZ095 10.5281/ZENODO.4605654 10.1093/GIGASCIENCE/GIZ052 10.1201/9781003441601-2 10.1186/1471-2105-9-82/TABLES/1 10.1007/S10723-018-09471-X/METRICS 10.1109/BIGDATA55660.2022.10020864 10.6084/M9.FIGSHARE.3115156 10.1038/NBT.3820 10.1093/NAR/GKN176 10.1109/ISCON47742.2019.9036238 10.1038/nbt.3772 10.1007/S00778-017-0486-1 10.1109/TENCON.2017.8228349 10.1093/BIOINFORMATICS/BTZ054 10.1162/DINT_A_00033 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10723-024-09777-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1572-9184 |
| ExternalDocumentID | 10_1007_s10723_024_09777_z |
| GrantInformation_xml | – fundername: HORIZON EUROPE European Research Council grantid: 101058386 funderid: http://dx.doi.org/10.13039/100019180 – fundername: Valencian Innovation Agency grantid: INNTA3/2021/5 – fundername: MICIU/AEI/10.13039/501100011033 grantid: PID2020-113126RB-I00 |
| GroupedDBID | -59 -5G -BR -D3 -D4 -D8 -DT -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c314t-c87e003387d726bda2a5d9d5ea74a1a0f82307fc67cabe630a817b75d109ea823 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001282129900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-7873 |
| IngestDate | Wed Nov 05 04:10:03 EST 2025 Sat Nov 29 03:23:27 EST 2025 Fri Feb 21 02:38:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Cloud computing High-throughput computing Bioinformatics infrastructure Monitoring Workflow management systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-c87e003387d726bda2a5d9d5ea74a1a0f82307fc67cabe630a817b75d109ea823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10723-024-09777-z |
| PQID | 3087032816 |
| PQPubID | 2043852 |
| ParticipantIDs | proquest_journals_3087032816 crossref_primary_10_1007_s10723_024_09777_z springer_journals_10_1007_s10723_024_09777_z |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | From Grids to Cloud Federations |
| PublicationTitle | Journal of grid computing |
| PublicationTitleAbbrev | J Grid Computing |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Amazon Web Services (AWS). https://aws.amazon.com/ (2023) KhanFZSoiland-ReyesSSinnottROLonieAGobleCCrusoeMRSharing interoperable workflow provenance: A review of best practices and their practical application in CWLProvGigaSci201981112710.1093/GIGASCIENCE/GIZ095 Infrastructure As Code Provisioning Tool - AWS CloudFormation - AWS. https://aws.amazon.com/cloudformation/ (2024) Bader, J., Witzke, J., Becker, S., Loser, A., Lehmann, F., Doehler, L., Vu, A.D., Kao, O.: Towards advanced monitoring for scientific workflows. Proceedings - 2022 IEEE International Conference on Big Data. Big Data 2709–2715 (2022). https://doi.org/10.1109/BIGDATA55660.2022.10020864 FourmentMGillingsMRA comparison of common programming languages used in bioinformaticsBMC Bioinform.2008911910.1186/1471-2105-9-82/TABLES/1 HaleJSLiLRichardsonCNWellsGNContainers for portable, productive, and performant scientific computingComput. Sci. Eng.2017196405010.1109/MCSE.2017.2421459 Telegraf | InfluxData. https://influxdata.com/telegraf (2024) YooABJetteMAGrondonaMSLURM: Simple linux utility for resource managementLect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)20032862446010.1007/10968987_3 GötzSGarcía-GómezJMTerolJWilliamsTDNagarajSHNuedaMJRoblesMTalónMDopazoJConesaAHigh-throughput functional annotation and data mining with the Blast2GO suiteNucleic Acids Res.200836103420343510.1093/NAR/GKN176 HerschelMDiestelkämperRBen LahmarHA survey on provenance: What for? What form? What from?VLDB J.201726688190610.1007/S00778-017-0486-1 Google Cloud. https://cloud.google.com/ (2023) Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. ISPASS 2015 - IEEE International Symposium on Performance Analysis of Systems and Software, 171–172 (2015). https://doi.org/10.1109/ISPASS.2015.7095802 O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti, V.: The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Research 6:52 6, 52 (2017). https://doi.org/10.12688/f1000research.10137.1 Funnel. https://ohsu-comp-bio.github.io/funnel/ (2023) Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna, M., Birger, C., Kent, W.J., Patterson, D.A., Joseph, A.D., Zhu, J., Zaranek, S., Getz, G., Haussler, D., Paten, B.: Toil enables reproducible, open source, big biomedical data analyses. Nature Publishing Group (2017). https://doi.org/10.1038/nbt.3772 TyryshkinaACoraorNNekrutenkoAPredicting runtimes of bioinformatics tools based on historical data: Five years of Galaxy usageBioinformatics201935183453346010.1093/BIOINFORMATICS/BTZ054 Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modelling provenance metadata. ACM Int. Conf. Proc. Ser. 773–776 (2013). https://doi.org/10.1145/2452376.2452478 WES Specification. https://github.com/ga4gh/workflow-execution-service-schemas (2023) chanzuckerberg/miniwdl: Workflow Description Language developer tools & local runner. https://github.com/chanzuckerberg/miniwdl (2023) BakerMPennyDIs there a reproducibility crisis?Nature2016533760445245410.1038/533452A Di TommasoPChatzouMFlodenEWBarjaPPPalumboENotredameCNextflow enables reproducible computational workflowsNat. Biotechnol.201735431631910.1038/NBT.3820 Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams, A., Eguinoa, I., Droesbeke, B., Leo, S., Pireddu, L., Rodríguez-Navas, L., Fernández, J.M., Capella-Gutierrez, S., Ménager, H., Grüning, B., Serrano-Solano, B., Ewels, P., Coppens, F.: Implementing FAIR digital objects in the EOSC-Life workflow collaboratory (2021). https://doi.org/10.5281/ZENODO.4605654 . https://zenodo.org/record/4605654 BirjeMNBullaCCommercial and open source cloud monitoring tools: A reviewLearn. Anal. Intell. Syst.2020348049010.1007/978-3-030-24322-7_59/FIGURE Genomics Workflows on AWS. https://docs.opendata.aws/genomics-workflows/quick-start.html (2023) Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow Language, v1.0. Figshare (2016). https://doi.org/10.6084/M9.FIGSHARE.3115156 Google Batch. https://cloud.google.com/batch/ (2023) OmicsBox - Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox/ (2023) OpenTofu. https://opentofu.org/ (2024) Azure Batch. https://azure.microsoft.com/en-us/products/batch/ (2023) Voss, K., Auwera, G.V.d., Gentry, J., Voss, K., Auwera, G., Gentry, J.: Full-stack genomics pipelining with GATK4 + WDL + Cromwell. ISCB Comm. J. 6 (2017). https://doi.org/10.7490/F1000RESEARCH.1114634.1 Microsoft Azure. https://azure.microsoft.com/ (2023) WrattenLWilmAGökeJReproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managersNat. Methods202118101161116810.1038/s41592-021-01254-9 InfluxDB Cloud | InfluxData. https://www.influxdata.com/products/influxdb-cloud/ (2023) TES specification. https://github.com/ga4gh/task-execution-schemas (2023) AWS Batch. https://aws.amazon.com/batch/ (2023) HashiCorp State of Cloud Strategy Survey. https://www.hashicorp.com/state-of-the-cloud (2022) Cloud monitoring | Dynatrace. https://www.dynatrace.com/platform/cloud-monitoring/ (2023) IEEE SA - IEEE 1003.1-2001 (POSIX). https://standards.ieee.org/ieee/1003.1/1389/ (2021) Giorgi, F.M., Ceraolo, C., Mercatelli, D.: The R Language: An Engine for Bioinformatics and Data Science. Life (Basel, Switzerland) 12(5) (2022). https://doi.org/10.3390/LIFE12050648 Bage, A.P., Saxena, S., Singh, Y.: A brief review on lightweight practice of docker vulnerabilities. Software Engineering Approaches to Enable Digital Transformation Technologies 18–24 (2023). https://doi.org/10.1201/9781003441601-2 Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic. https://www.elastic.co/elasticsearch (2024) da Rosa RighiRLehmannMGomesMMNobreJCCostaCARigoSJLenaMMohrRFOliveiraLRBA survey on global management view: toward combining system monitoring, resource management, and load predictionJ. Grid Comput.201917347350210.1007/S10723-018-09471-X/METRICS OhtaTTanjoTOgasawaraOAccumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selectionGigaScience20198411110.1093/GIGASCIENCE/GIZ052 Grafana: The open observability platform | Grafana Labs. https://grafana.com/ (2024) Fahad, A.M., Ahmed, A.A., Kahar, M.N.M.: The importance of monitoring cloud computing: An intensive review. IEEE Region 10 Annual International Conference, Proceedings/TENCON 2017-December, 2858–2863 (2017). https://doi.org/10.1109/TENCON.2017.8228349 Cloud Monitoring as a Service | Datadog. https://www.datadoghq.com/ (2023) Nomad by HashiCorp. https://www.nomadproject.io/ (2024) GobleCCohen-BoulakiaSSoiland-ReyesSGarijoDGilYCrusoeMRPetersKSchoberDFAIR Computational workflowsData Intell.202021–210812110.1162/DINT_A_00033 GiardineBRiemerCHardisonRCBurhansRElnitskiLShahPZhangYBlankenbergDAlbertITaylorJMillerWKentWJNekrutenkoAGalaxy: A platform for interactive large-scale genome analysisGenome Res.200515101451145510.1101/gr.4086505 What is Amazon SNS? - Amazon Simple Notification Service. https://docs.aws.amazon.com/sns/latest/dg/welcome.html (2024) Siddiqui, T., Siddiqui, S.A., Khan, N.A.: Comprehensive Analysis of Container Technology. 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, 218–223 (2019). https://doi.org/10.1109/ISCON47742.2019.9036238 Fully Managed Container Solution - Amazon Elastic Container Service (Amazon ECS) - Amazon Web Services. https://aws.amazon.com/ecs/ (2024) 9777_CR41 9777_CR40 9777_CR43 9777_CR42 9777_CR45 9777_CR44 9777_CR47 9777_CR49 9777_CR48 9777_CR50 9777_CR52 9777_CR10 A Tyryshkina (9777_CR30) 2019; 35 9777_CR19 9777_CR11 M Herschel (9777_CR13) 2017; 26 9777_CR16 9777_CR15 9777_CR18 9777_CR17 9777_CR7 9777_CR6 FZ Khan (9777_CR14) 2019; 8 9777_CR4 9777_CR3 9777_CR2 9777_CR1 9777_CR21 T Ohta (9777_CR34) 2019; 8 M Fourment (9777_CR8) 2008; 9 R da Rosa Righi (9777_CR33) 2019; 17 MN Birje (9777_CR32) 2020; 3 JS Hale (9777_CR5) 2017; 19 P Di Tommaso (9777_CR20) 2017; 35 M Baker (9777_CR9) 2016; 533 9777_CR23 9777_CR22 9777_CR25 AB Yoo (9777_CR28) 2003; 2862 9777_CR27 9777_CR26 9777_CR29 9777_CR31 B Giardine (9777_CR24) 2005; 15 C Goble (9777_CR12) 2020; 2 L Wratten (9777_CR46) 2021; 18 S Götz (9777_CR51) 2008; 36 9777_CR36 9777_CR35 9777_CR38 9777_CR37 9777_CR39 |
| References_xml | – reference: Voss, K., Auwera, G.V.d., Gentry, J., Voss, K., Auwera, G., Gentry, J.: Full-stack genomics pipelining with GATK4 + WDL + Cromwell. ISCB Comm. J. 6 (2017). https://doi.org/10.7490/F1000RESEARCH.1114634.1 – reference: chanzuckerberg/miniwdl: Workflow Description Language developer tools & local runner. https://github.com/chanzuckerberg/miniwdl (2023) – reference: Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. ISPASS 2015 - IEEE International Symposium on Performance Analysis of Systems and Software, 171–172 (2015). https://doi.org/10.1109/ISPASS.2015.7095802 – reference: OhtaTTanjoTOgasawaraOAccumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selectionGigaScience20198411110.1093/GIGASCIENCE/GIZ052 – reference: InfluxDB Cloud | InfluxData. https://www.influxdata.com/products/influxdb-cloud/ (2023) – reference: Google Batch. https://cloud.google.com/batch/ (2023) – reference: WrattenLWilmAGökeJReproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managersNat. Methods202118101161116810.1038/s41592-021-01254-9 – reference: IEEE SA - IEEE 1003.1-2001 (POSIX). https://standards.ieee.org/ieee/1003.1/1389/ (2021) – reference: GiardineBRiemerCHardisonRCBurhansRElnitskiLShahPZhangYBlankenbergDAlbertITaylorJMillerWKentWJNekrutenkoAGalaxy: A platform for interactive large-scale genome analysisGenome Res.200515101451145510.1101/gr.4086505 – reference: Grafana: The open observability platform | Grafana Labs. https://grafana.com/ (2024) – reference: Fahad, A.M., Ahmed, A.A., Kahar, M.N.M.: The importance of monitoring cloud computing: An intensive review. IEEE Region 10 Annual International Conference, Proceedings/TENCON 2017-December, 2858–2863 (2017). https://doi.org/10.1109/TENCON.2017.8228349 – reference: Genomics Workflows on AWS. https://docs.opendata.aws/genomics-workflows/quick-start.html (2023) – reference: Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna, M., Birger, C., Kent, W.J., Patterson, D.A., Joseph, A.D., Zhu, J., Zaranek, S., Getz, G., Haussler, D., Paten, B.: Toil enables reproducible, open source, big biomedical data analyses. Nature Publishing Group (2017). https://doi.org/10.1038/nbt.3772 – reference: AWS Batch. https://aws.amazon.com/batch/ (2023) – reference: da Rosa RighiRLehmannMGomesMMNobreJCCostaCARigoSJLenaMMohrRFOliveiraLRBA survey on global management view: toward combining system monitoring, resource management, and load predictionJ. Grid Comput.201917347350210.1007/S10723-018-09471-X/METRICS – reference: Di TommasoPChatzouMFlodenEWBarjaPPPalumboENotredameCNextflow enables reproducible computational workflowsNat. Biotechnol.201735431631910.1038/NBT.3820 – reference: HerschelMDiestelkämperRBen LahmarHA survey on provenance: What for? What form? What from?VLDB J.201726688190610.1007/S00778-017-0486-1 – reference: Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic. https://www.elastic.co/elasticsearch (2024) – reference: Fully Managed Container Solution - Amazon Elastic Container Service (Amazon ECS) - Amazon Web Services. https://aws.amazon.com/ecs/ (2024) – reference: Infrastructure As Code Provisioning Tool - AWS CloudFormation - AWS. https://aws.amazon.com/cloudformation/ (2024) – reference: Funnel. https://ohsu-comp-bio.github.io/funnel/ (2023) – reference: Giorgi, F.M., Ceraolo, C., Mercatelli, D.: The R Language: An Engine for Bioinformatics and Data Science. Life (Basel, Switzerland) 12(5) (2022). https://doi.org/10.3390/LIFE12050648 – reference: Google Cloud. https://cloud.google.com/ (2023) – reference: YooABJetteMAGrondonaMSLURM: Simple linux utility for resource managementLect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)20032862446010.1007/10968987_3 – reference: GötzSGarcía-GómezJMTerolJWilliamsTDNagarajSHNuedaMJRoblesMTalónMDopazoJConesaAHigh-throughput functional annotation and data mining with the Blast2GO suiteNucleic Acids Res.200836103420343510.1093/NAR/GKN176 – reference: What is Amazon SNS? - Amazon Simple Notification Service. https://docs.aws.amazon.com/sns/latest/dg/welcome.html (2024) – reference: Bader, J., Witzke, J., Becker, S., Loser, A., Lehmann, F., Doehler, L., Vu, A.D., Kao, O.: Towards advanced monitoring for scientific workflows. Proceedings - 2022 IEEE International Conference on Big Data. Big Data 2709–2715 (2022). https://doi.org/10.1109/BIGDATA55660.2022.10020864 – reference: HashiCorp State of Cloud Strategy Survey. https://www.hashicorp.com/state-of-the-cloud (2022) – reference: Azure Batch. https://azure.microsoft.com/en-us/products/batch/ (2023) – reference: OpenTofu. https://opentofu.org/ (2024) – reference: HaleJSLiLRichardsonCNWellsGNContainers for portable, productive, and performant scientific computingComput. Sci. Eng.2017196405010.1109/MCSE.2017.2421459 – reference: Cloud monitoring | Dynatrace. https://www.dynatrace.com/platform/cloud-monitoring/ (2023) – reference: O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G., Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti, V.: The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Research 6:52 6, 52 (2017). https://doi.org/10.12688/f1000research.10137.1 – reference: BirjeMNBullaCCommercial and open source cloud monitoring tools: A reviewLearn. Anal. Intell. Syst.2020348049010.1007/978-3-030-24322-7_59/FIGURE – reference: Microsoft Azure. https://azure.microsoft.com/ (2023) – reference: Siddiqui, T., Siddiqui, S.A., Khan, N.A.: Comprehensive Analysis of Container Technology. 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, 218–223 (2019). https://doi.org/10.1109/ISCON47742.2019.9036238 – reference: Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.: Common Workflow Language, v1.0. Figshare (2016). https://doi.org/10.6084/M9.FIGSHARE.3115156 – reference: Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications for modelling provenance metadata. ACM Int. Conf. Proc. Ser. 773–776 (2013). https://doi.org/10.1145/2452376.2452478 – reference: GobleCCohen-BoulakiaSSoiland-ReyesSGarijoDGilYCrusoeMRPetersKSchoberDFAIR Computational workflowsData Intell.202021–210812110.1162/DINT_A_00033 – reference: KhanFZSoiland-ReyesSSinnottROLonieAGobleCCrusoeMRSharing interoperable workflow provenance: A review of best practices and their practical application in CWLProvGigaSci201981112710.1093/GIGASCIENCE/GIZ095 – reference: Telegraf | InfluxData. https://influxdata.com/telegraf (2024) – reference: Cloud Monitoring as a Service | Datadog. https://www.datadoghq.com/ (2023) – reference: WES Specification. https://github.com/ga4gh/workflow-execution-service-schemas (2023) – reference: BakerMPennyDIs there a reproducibility crisis?Nature2016533760445245410.1038/533452A – reference: Bage, A.P., Saxena, S., Singh, Y.: A brief review on lightweight practice of docker vulnerabilities. Software Engineering Approaches to Enable Digital Transformation Technologies 18–24 (2023). https://doi.org/10.1201/9781003441601-2 – reference: TyryshkinaACoraorNNekrutenkoAPredicting runtimes of bioinformatics tools based on historical data: Five years of Galaxy usageBioinformatics201935183453346010.1093/BIOINFORMATICS/BTZ054 – reference: Nomad by HashiCorp. https://www.nomadproject.io/ (2024) – reference: OmicsBox - Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox/ (2023) – reference: Amazon Web Services (AWS). https://aws.amazon.com/ (2023) – reference: Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams, A., Eguinoa, I., Droesbeke, B., Leo, S., Pireddu, L., Rodríguez-Navas, L., Fernández, J.M., Capella-Gutierrez, S., Ménager, H., Grüning, B., Serrano-Solano, B., Ewels, P., Coppens, F.: Implementing FAIR digital objects in the EOSC-Life workflow collaboratory (2021). https://doi.org/10.5281/ZENODO.4605654 . https://zenodo.org/record/4605654 – reference: TES specification. https://github.com/ga4gh/task-execution-schemas (2023) – reference: FourmentMGillingsMRA comparison of common programming languages used in bioinformaticsBMC Bioinform.2008911910.1186/1471-2105-9-82/TABLES/1 – ident: 9777_CR23 – ident: 9777_CR42 – ident: 9777_CR11 doi: 10.7490/F1000RESEARCH.1114634.1 – ident: 9777_CR27 – ident: 9777_CR16 doi: 10.12688/f1000research.10137.1 – volume: 2862 start-page: 44 year: 2003 ident: 9777_CR28 publication-title: Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) doi: 10.1007/10968987_3 – volume: 19 start-page: 40 issue: 6 year: 2017 ident: 9777_CR5 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2017.2421459 – ident: 9777_CR6 doi: 10.1109/ISPASS.2015.7095802 – ident: 9777_CR37 – ident: 9777_CR52 – ident: 9777_CR3 – volume: 15 start-page: 1451 issue: 10 year: 2005 ident: 9777_CR24 publication-title: Genome Res. doi: 10.1101/gr.4086505 – ident: 9777_CR22 – volume: 18 start-page: 1161 issue: 10 year: 2021 ident: 9777_CR46 publication-title: Nat. Methods doi: 10.1038/s41592-021-01254-9 – ident: 9777_CR43 – ident: 9777_CR39 – ident: 9777_CR47 – volume: 533 start-page: 452 issue: 7604 year: 2016 ident: 9777_CR9 publication-title: Nature doi: 10.1038/533452A – ident: 9777_CR26 – ident: 9777_CR15 doi: 10.1145/2452376.2452478 – volume: 3 start-page: 480 year: 2020 ident: 9777_CR32 publication-title: Learn. Anal. Intell. Syst. doi: 10.1007/978-3-030-24322-7_59/FIGURE – ident: 9777_CR7 doi: 10.3390/LIFE12050648 – ident: 9777_CR29 – ident: 9777_CR36 – volume: 8 start-page: 1 issue: 11 year: 2019 ident: 9777_CR14 publication-title: GigaSci doi: 10.1093/GIGASCIENCE/GIZ095 – ident: 9777_CR17 doi: 10.5281/ZENODO.4605654 – ident: 9777_CR21 – volume: 8 start-page: 1 issue: 4 year: 2019 ident: 9777_CR34 publication-title: GigaScience doi: 10.1093/GIGASCIENCE/GIZ052 – ident: 9777_CR49 doi: 10.1201/9781003441601-2 – ident: 9777_CR48 – ident: 9777_CR19 – ident: 9777_CR44 – volume: 9 start-page: 1 issue: 1 year: 2008 ident: 9777_CR8 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-82/TABLES/1 – ident: 9777_CR25 – ident: 9777_CR40 – volume: 17 start-page: 473 issue: 3 year: 2019 ident: 9777_CR33 publication-title: J. Grid Comput. doi: 10.1007/S10723-018-09471-X/METRICS – ident: 9777_CR50 – ident: 9777_CR35 doi: 10.1109/BIGDATA55660.2022.10020864 – ident: 9777_CR10 doi: 10.6084/M9.FIGSHARE.3115156 – ident: 9777_CR1 – ident: 9777_CR45 – volume: 35 start-page: 316 issue: 4 year: 2017 ident: 9777_CR20 publication-title: Nat. Biotechnol. doi: 10.1038/NBT.3820 – volume: 36 start-page: 3420 issue: 10 year: 2008 ident: 9777_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/NAR/GKN176 – ident: 9777_CR4 doi: 10.1109/ISCON47742.2019.9036238 – ident: 9777_CR18 doi: 10.1038/nbt.3772 – ident: 9777_CR41 – volume: 26 start-page: 881 issue: 6 year: 2017 ident: 9777_CR13 publication-title: VLDB J. doi: 10.1007/S00778-017-0486-1 – ident: 9777_CR31 doi: 10.1109/TENCON.2017.8228349 – volume: 35 start-page: 3453 issue: 18 year: 2019 ident: 9777_CR30 publication-title: Bioinformatics doi: 10.1093/BIOINFORMATICS/BTZ054 – ident: 9777_CR38 – ident: 9777_CR2 – volume: 2 start-page: 108 issue: 1–2 year: 2020 ident: 9777_CR12 publication-title: Data Intell. doi: 10.1162/DINT_A_00033 |
| SSID | ssj0025802 |
| Score | 2.3607044 |
| Snippet | The increasing use of multiple Workflow Management Systems (WMS) employing various workflow languages and shared workflow repositories enhances the open-source... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 62 |
| SubjectTerms | Bioinformatics Cloud computing Computer Science Configuration management Cost analysis Data analysis Data processing Management of Computing and Information Systems Management systems Modularity Monitoring Open source software Processor Architectures Resource scheduling Resource utilization Task scheduling User Interfaces and Human Computer Interaction Web services Workflow management systems Workflow software |
| SummonAdditionalLinks | – databaseName: ProQuest advanced technologies & aerospace journals dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcODCeIrBQDlwg4j0kablgmAwIQHTDgxNXKokTWESasc2QNqvp05TKpDgwjmSldqO49pfPiN0KKUo_MAXxIkkJ36YRES6VJE0TCPGAq1Sw7P9cMt7vXA4jPq24Da1sMoqJppAneQKauQnwFwH3G9OcDZ-JTA1CrqrdoTGIloClgQY3dBnj18_XCwsMYeMA2qOe_bRjH06x13oYPqEFikQJ_PvF1Odbf5okJp7p9v8747X0KrNOPF56SLraEFnG6hZTXPA9nBvItm5uznFV9kzMHBkT7gq7OMBYM9wefhhj1iYL8CXBtKh8cUot_SrQPmMofyevuQfuEbWYMuLvoUG3av7zjWxExiI8hx_RlTINUx7C3nC3UAmwhUsiRKmBfeFI2gKbTqeqoArIXXgURE6XHKWODTSoljcRo0sz_QOwlQyEywcUUimbiQSRbWvU-lTxb2QttBRpf54XBJtxDWlMhgrLowVG2PF8xZqVzqP7aGbxrXCW-i4slq9_Lu03b-l7aEVt3QUQp02aswmb3ofLav32Wg6OTAu9wmX891y priority: 102 providerName: ProQuest |
| Title | CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems |
| URI | https://link.springer.com/article/10.1007/s10723-024-09777-z https://www.proquest.com/docview/3087032816 |
| Volume | 22 |
| WOSCitedRecordID | wos001282129900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: P5Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: BENPR dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9184 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oePAiPiOKpAdv2qT76LbrTRBiohKCQoiXTdvtKolZDKAm_Hq3-3DV6EHP3UybeXRmOzPfABxLKRI9cAW2fMmwy0MfS5soHPHIp9TTKkpxtkfXrNfj47Hfz5vC5kW1e5GSTG_qT81uzDY5RxeTJGhheLkK1cTdcTOwYXA7-vjNojyrNKTM1MoxJ2-V-ZnGV3dUxpjf0qKpt-nW_nfOTdjIo0t0nqnDFqzoeBtqxeQGlBvyDsj2zdUZ6sSPBm0jfkDFIz4amjozlBm62RWJ9NzoIi3f0Kg1meZQqwbeGZmn9uhp-obKKhqUY6DvwrDbuWtf4nzaAlaO5S6w4kybyW6chcz2ZChsQUM_pFowV1iCRCYlxyLlMSWk9hwiuMUko6FFfC2SxT2oxNNY7wMikqYXgyUSysT2RaiIdnUkXaKYw0kdTgqmB88ZqEZQwicb9gUJ-4KUfcGyDo1CLkFuYPPAABkaKEDLq8NpIYdy-XdqB3_7_BDW7UyUmFgNqCxmL_oI1tTrYjKfNaHa6vT6gyas9ul9M1XDd3OV1uw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqASX0vIQC1vqA5zAwvHasVMJVS0PgXZZcQCEuATbcQCpygK77ar8KH5jM3kQUQluHDhHGikznz-PPeNvANasNTkOhKFBZBUVOomo5czRVKeRlKF3aaGzfdZT_b4-P4-OJ-CxfguDbZU1JxZEnQwc3pFvoXIdar8F4ffbO4pTo7C6Wo_QKGHR9X_H-ZFtuH24m8d3nfP9vZOdA1pNFaCuE4gRdVp5nGCmVaJ4aBPDjUyiRHqjhAkMS7H0pFIXKmesDzvM6EBZJZOARd5oFDrIKX9KCM5wFR3Li6cDntRlj6NU2KWnOtUjneqpnuJYMRWU5SmXog_PN8Imu_2vIFvsc_uz781Dn-BjlVGTH-US-AwTPpuD2XpaBanIax7szlH3G9nLrlFhJLsideGCnGJvHSnJDX1CTOExslu0rHjy82ZQycuipDXB8kL6azAmTecQqXTfF-D0Tf50ESazQeaXgDArCzIMTG6Z8cgkjnnhUyuYUx3NWrBRhzu-LYVE4kYyGsER5-CIC3DEDy1o1zGOK1IZxk2AW7BZo6T5_LK15detfYXpg5OjXtw77HdXYIaXIKUsaMPk6P63_wIf3J_RzfB-tYA7gcu3Rs8_Xc86hA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGprsK7vetA-U1lLQlt6WJJvVgmxLuyr017vZh62iB_GcZcjOTJJJ5ptvAM6F4IkfWBxTTzBsuYGHhUEkDt3Qs21HyTDl2R50WLfrDodeb6mKP0W7FynJrKZBszRFcW0ShLWlwjdm6PyjhUkSwDA8X4U1SwPp9X39YfB55bLdDHVoM42bY2ZeNvOzjK9H0yLe_JYiTU-eVvn_c96GrTzqRNeZm-zAiop2oVx0dED5At8DUb9vX6Fm9KxZOKInVDzuo77Gn6FsA9AzQDz9B9RIYR0K3YzGOQWrpn1G-gk-fBm_owW6BuXc6PvQbzUf67c478KApUmtGEuXKd3xzWUBMxwRcIPbgRfYijOLU05CnapjoXSY5EI5JuEuZYLZASWe4sngAZSicaQOARFhpxsG5YlkYng8kERZKhQWkcx0SQUuCgP4k4xsw1_QKmv1-Yn6_FR9_rwC1cJGfr7wZr4mONQUgdSpwGVhk8Xw79KO_vb5GWz0Gi2_c9dtH8OmkVkVE1qFUjx9VSewLt_i0Wx6mvrjBwih4Bo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMK%3A+Enhancing+Resource+Usage+Monitoring+across+Diverse+Bioinformatics+Workflow+Management+Systems&rft.jtitle=Journal+of+grid+computing&rft.au=Nica%2C+Robert&rft.au=G%C3%B6tz%2C+Stefan&rft.au=Molt%C3%B3%2C+Germ%C3%A1n&rft.date=2024-09-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1007%2Fs10723-024-09777-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10723_024_09777_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |