Convolutional autoencoder for on-demand parametric inverse design of local resonator geometry in wind turbine metastructure targeting vibration control

Vibration control in structures is essential to mitigate undesired dynamic responses, thereby enhancing stability, safety, and performance under varying loading conditions. Mechanical metamaterials have emerged as effective solutions, enabling tailored dynamic properties for vibration attenuation. T...

Full description

Saved in:
Bibliographic Details
Published in:AI EDAM Vol. 39
Main Authors: Naeini, Mohammadreza Sahaf, Machado, Marcela, Dutkiewicz, Maciej
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 10.10.2025
Subjects:
ISSN:0890-0604, 1469-1760
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vibration control in structures is essential to mitigate undesired dynamic responses, thereby enhancing stability, safety, and performance under varying loading conditions. Mechanical metamaterials have emerged as effective solutions, enabling tailored dynamic properties for vibration attenuation. This study introduces a convolutional autoencoder framework for the inverse design of local resonators embedded in mechanical metamaterials. The model learns from the dynamic behaviour of primary structures coupled with ideal absorbers to predict the geometric parameters of resonators that achieve desired vibration control performance. Unlike conventional approaches requiring full numerical models, the proposed method operates as a data-driven tool, where the target frequency to be mitigated is provided as input, and the model directly outputs the resonator geometry. A large dataset, generated through physics-informed simulations of ideal absorber dynamics, supports training while incorporating both spectral and geometric variability. Within the architecture, the encoder maps input receptance spectra to resonator geometries, while the decoder reconstructs the target receptance response, ensuring dynamic consistency. Once trained, the framework predicts resonator configurations that satisfy predefined frequency targets with high accuracy, enabling efficient design of passive controllers of the syntonized mass type. This study specifically demonstrates the application of the methodology to resonators embedded in wind turbine metastructures, a critical context for mitigating structural vibrations and improving operational efficiency. Results confirm strong agreement between predicted and target responses, underscoring the potential of deep learning techniques to support on-demand inverse design of mechanical metamaterials for smart vibration control in wind energy and related engineering applications.
AbstractList Vibration control in structures is essential to mitigate undesired dynamic responses, thereby enhancing stability, safety, and performance under varying loading conditions. Mechanical metamaterials have emerged as effective solutions, enabling tailored dynamic properties for vibration attenuation. This study introduces a convolutional autoencoder framework for the inverse design of local resonators embedded in mechanical metamaterials. The model learns from the dynamic behaviour of primary structures coupled with ideal absorbers to predict the geometric parameters of resonators that achieve desired vibration control performance. Unlike conventional approaches requiring full numerical models, the proposed method operates as a data-driven tool, where the target frequency to be mitigated is provided as input, and the model directly outputs the resonator geometry. A large dataset, generated through physics-informed simulations of ideal absorber dynamics, supports training while incorporating both spectral and geometric variability. Within the architecture, the encoder maps input receptance spectra to resonator geometries, while the decoder reconstructs the target receptance response, ensuring dynamic consistency. Once trained, the framework predicts resonator configurations that satisfy predefined frequency targets with high accuracy, enabling efficient design of passive controllers of the syntonized mass type. This study specifically demonstrates the application of the methodology to resonators embedded in wind turbine metastructures, a critical context for mitigating structural vibrations and improving operational efficiency. Results confirm strong agreement between predicted and target responses, underscoring the potential of deep learning techniques to support on-demand inverse design of mechanical metamaterials for smart vibration control in wind energy and related engineering applications.
Author Dutkiewicz, Maciej
Machado, Marcela
Naeini, Mohammadreza Sahaf
Author_xml – sequence: 1
  givenname: Mohammadreza Sahaf
  surname: Naeini
  fullname: Naeini, Mohammadreza Sahaf
  organization: Faculty of Civil, Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
– sequence: 2
  givenname: Marcela
  orcidid: 0000-0002-7488-7201
  surname: Machado
  fullname: Machado, Marcela
  email: marcelam@unb.br
  organization: Faculty of Civil, Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
– sequence: 3
  givenname: Maciej
  surname: Dutkiewicz
  fullname: Dutkiewicz, Maciej
  organization: Faculty of Civil, Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
BookMark eNplUMtKxDAUDTKCM6Mf4C4_UL1pmj6WMviCARfquqTJTcnQSSRJR_wSf9cU3Xk3F86Lw9mQlfMOCblmcMOANbev0HYANVSlYACMd2dkzaq6K1hTw4qsF7pY-AuyifEA-TpRrcn3zruTn-ZkvZMTlXPy6JTXGKjxgXpXaDxKp-mHDPKIKVhFrTthiEg1Rjs66g2dvMrmgDGHpGwb0S_aryylnza70xwG65BmVMYUZpUBpEmGEZN1Iz3ZIcilA1XepeCnS3Ju5BTx6u9vyfvD_dvuqdi_PD7v7vaF4qxKhaq1KdsWQUEJFXasG0RdlarNbIstV0yAAKl0YyQbRIPGlBXT2KCEWhjOt4T_5ip5HILVI_YHP4e8RewZ9Mu2_b9t-Q8--nMs
ContentType Journal Article
Copyright The Author(s), 2025. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2025. Published by Cambridge University Press
DBID IKXGN
DOI 10.1017/S0890060425100139
DatabaseName Cambridge Journals Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1469-1760
ExternalDocumentID 10_1017_S0890060425100139
GroupedDBID -1D
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
23N
4.4
5GY
5VS
74X
74Y
7~V
AAAZR
AABES
AABWE
AACJH
AAFUK
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABVKB
ABXAU
ABXHF
ABZCX
ACBMC
ACDLN
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADVJH
AEBAK
AEMTW
AENGE
AFFUJ
AFKQG
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
BBLKV
BENPR
BGHMG
BLZWO
BMAJL
C0O
CBIIA
CCQAD
CCTKK
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
EBS
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L98
M-V
M7~
NIKVX
O9-
OYBOY
P2P
PYCCK
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WYP
ZYDXJ
ID FETCH-LOGICAL-c314t-c6df288e0c0204e919b5642c83148e83c15050acd7fa1b57eff241de7ea065f33
IEDL.DBID IKXGN
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001590406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-0604
IngestDate Sat Oct 11 06:52:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
parameter-based inverse design
supervised autoencoder
latent space exploration
sensitivity optimization method
Language English
License http://creativecommons.org/licenses/by/4.0 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c6df288e0c0204e919b5642c83148e83c15050acd7fa1b57eff241de7ea065f33
ORCID 0000-0002-7488-7201
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0890060425100139/type/journal_article
PageCount 19
ParticipantIDs cambridge_journals_10_1017_S0890060425100139
PublicationCentury 2000
PublicationDate 2025-10-10
PublicationDateYYYYMMDD 2025-10-10
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-10
  day: 10
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
PublicationTitle AI EDAM
PublicationTitleAlternate AIEDAM
PublicationYear 2025
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2022; 250
2023; 36
2020; 361
2019; 97
2019; 11
2018; 126
2021; 129
2020; 15
2024; 30
2020; 488
2024; 223
2022; 22
2023; 3
2022; 66
2021; 30
2024; 38
2014; 66
2022; 215
2022; 29
2020; 8
2023; 20
2023; 25
2018; 4
2020; 53
2021; 510
2020; 9
2024; 196
2024; 62
2011; 22
2024; 4
2024; 23
2023; 72
2023; 70
2023; 10
2021; 48
2023; 11
2003; 81
2022; 191
2006; 13
2023; 123
2009
2023; 126
2020; 101
2024; 11
2025; 13
2024; 125
2012; 79
1918; 95
2016; 120
2022; 236
2016; 57
2025; 262
2021; 11
2022; 180
2022
2019; 88
2024; 338
2018; 112
2023; 155
2019b; 71
2022; 56
2024; 40
2018
2024; 133
2024; 88
2022; 55
2022; 11
2024; 46
2021; 63
References_xml – volume: 129
  year: 2021
  article-title: Inverse design of a helmholtz resonator based low-frequency acoustic absorber using deep neural network
  publication-title: Journal of Applied Physics
– year: 2018
  article-title: Tunable fluid-solid metamaterials for manipulation of elastic wave propagation in broad frequency range
  publication-title: Applied Physics Letters
– volume: 13
  start-page: 1780
  year: 2025
  end-page: 1801
  article-title: Enhancing vibration attenuation in offshore wind turbine with multiphysics mechanical metamaterial
  publication-title: Energy Reports
– year: 2022
  article-title: Acoustic metamaterial design framework using deep learning and generative modeling
  publication-title: The Journal of the Acoustical Society of America
– volume: 22
  issue: 05
  year: 2022
  article-title: Spectral model of offshore wind turbines and vibration control by pendulum tuned mass dampers
  publication-title: International Journal of Strucutral Stability and Dynamics
– volume: 30
  start-page: 807
  year: 2024
  end-page: 821
  article-title: Vibration transmission characteristic prediction and structure inverse design of acoustic metamaterial beams based on deep learning
  publication-title: JVC/Journal of Vibration and Control
– volume: 66
  start-page: 365
  issue: 6
  year: 2022
  end-page: 393
  article-title: Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends
  publication-title: International Materials Reviews
– volume: 120
  start-page: 4963648
  issue: 13
  year: 2016
  article-title: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials
  publication-title: Journal of Applied Physics
– year: 2009
  article-title: Definition of a 5-MW reference wind turbine for offshore system development [electronic resource]
  publication-title: National Renewable Energy Laboratory
– volume: 125
  start-page: 650
  year: 2024
  end-page: 671
  article-title: Manipulating flexural waves to enhance the broadband vibration mitigation through inducing programmed disorder on smart rainbow metamaterials
  publication-title: Applied Mathematical Modelling
– volume: 180
  start-page: 109383
  year: 2022
  article-title: On the formation of a super stop-band in finite mono-coupled periodic structures using an array of vibration absorbers: Controlling parameters and physical insight
  publication-title: Mechanical Systems and Signal Processing
– volume: 11
  start-page: 439
  year: 2022
  end-page: 460
  article-title: Intelligent on-demand design of phononic metamaterials
  publication-title: Nano
– volume: 510
  start-page: 116280
  year: 2021
  article-title: Harnessing bulging or sloshing modes to design locally resonant liquid-solid metamaterials
  publication-title: Journal of Sound and Vibration
– volume: 155
  start-page: 100745
  year: 2023
  article-title: Programmable multi-physical mechanics of mechanical metamaterials, materials science and engineering: R
  publication-title: Report
– volume: 46
  start-page: 1806
  issue: 190
  year: 2024
  end-page: 3691
  article-title: Enhancing broadband vibration suppression of a cable conductor using graded metamaterials
  publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
– volume: 25
  start-page: 2300251
  issue: 17
  year: 2023
  article-title: Tensile properties of 3d-projected 4-polytopes: A new class of mechanical metamaterial
  publication-title: Advanced Engineering Materials
– volume: 191
  start-page: 108680
  year: 2022
  article-title: Deep auto-encoder network in predictive design of helmholtz resonator: On-demand prediction of sound absorption peak
  publication-title: Applied Acoustics
– volume: 55
  start-page: 101827
  year: 2022
  article-title: A physics-guided machine learning for multifunctional wave control in active metabeams
  publication-title: Extreme Mechanics Letters
– volume: 30
  issue: 8
  year: 2021
  article-title: Ultrathin acoustic absorbing metasurface based on deep learning approach
  publication-title: Smart Materials and Structures
– volume: 11
  start-page: 9749
  issue: 19
  year: 2019
  end-page: 9755
  article-title: Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network
  publication-title: Nanoscale
– volume: 488
  start-page: 115647
  year: 2020
  article-title: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments
  publication-title: Journal of Sound and Vibration
– volume: 57
  start-page: 1780
  year: 2016
  end-page: 1801
  article-title: Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum
  publication-title: Computational Mechanics
– volume: 79
  start-page: 1
  year: 2012
  end-page: 17
  article-title: Wave motion in periodic flexural beams and characterization of the transition between bragg scattering and local resonance
  publication-title: Journal of Applied Mechanics, Transactions ASME
– volume: 126
  start-page: 6326
  year: 2018
  end-page: 6334
  article-title: Deep-learning-enabled on-demand design of chiral metamaterials
  publication-title: ACS Nano
– volume: 11
  start-page: 2709
  issue: 6
  year: 2023
  end-page: 2731
  article-title: Multiclass supervised machine learning algorithms applied to damage and assessment using beam dynamic response
  publication-title: Journal of Vibration Engineering and Technologies
– volume: 88
  year: 2024
  article-title: Knowledge graph based opc ua information model automatic construction method for heterogeneous devices integration
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 72
  start-page: 106563
  year: 2023
  article-title: A fast-response-generation method for single-layer reticulated shells based on implicit parameter model of generative adversarial networks
  publication-title: Journal of Building Engineering
– volume: 22
  start-page: 1341
  issue: 9
  year: 2011
  end-page: 1356
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Transactions on Neural Networks
– volume: 20
  issue: 6
  year: 2023
  article-title: Research of the numerical simulation and machine learning backpropagation networks analysis of the sound absorption properties of cellular soundproofing materials
  publication-title: Results in Engineering
– volume: 9
  start-page: 1041
  year: 2020
  end-page: 1057
  article-title: Deep learning enabled inverse design in nanophotonics
  publication-title: Nano
– volume: 15
  year: 2020
  article-title: Prediction network of metamaterial with split ring resonator based on deep learning
  publication-title: Nanoscale Research Letters
– volume: 223
  start-page: 120056
  year: 2024
  article-title: Metamaterial-based vibration control for offshore wind turbines operating under multiple hazard excitation forces
  publication-title: Renewable Energy
– volume: 53
  issue: 27
  year: 2020
  article-title: Metasurface inverse design using machine learning approaches
  publication-title: Journal of Physics D: Applied Physics
– volume: 101
  year: 2020
  article-title: Inverse design of broadband highly reflective metasurfaces using neural networks
  publication-title: Physical Review B
– volume: 126
  start-page: 106998
  year: 2023
  article-title: Deep reinforcement learning for the rapid on-demand design of mechanical metamaterials with targeted nonlinear deformation responses
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 97
  start-page: 70
  year: 2019
  end-page: 78
  article-title: Spectral formulated modelling of an electrodynamic shaker
  publication-title: Mechanics Research Communications
– volume: 88
  start-page: 85
  year: 2019
  end-page: 105
  article-title: Inverse metamaterial design for controlling band gaps in scalar wave problems
  publication-title: Wave Motion
– volume: 133
  start-page: 108595
  year: 2024
  article-title: Beyond the limits of parametric design: Latent space exploration strategy enabling ultra-broadband acoustic metamaterials
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 112
  issue: 24
  year: 2018
  article-title: Neural network based design of metagratings
  publication-title: Applied Physics Letters
– volume: 11
  year: 2021
  article-title: Metamaterial reverse multiple prediction method based on deep learning
  publication-title: Nanomaterials
– volume: 8
  start-page: 211849
  year: 2020
  end-page: 211859
  article-title: Customized inverse design of metamaterial absorber based on target-driven deep learning method
  publication-title: IEEE Access
– volume: 95
  start-page: 106
  issue: 666
  year: 1918
  end-page: 115
  article-title: The periods of lateral vibration of loaded shafts.—The rational derivation of dunkerley’s empirical rule for determining whirling speeds
  publication-title: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character
– volume: 262
  year: 2025
  article-title: Industrial robot energy consumption model identification: A coupling model-driven and data-driven paradigm
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 18629
  year: 2021
  article-title: Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
  publication-title: Scientific Reports
– volume: 4
  year: 2024
  article-title: Machine intelligence in metamaterials design: A review
  publication-title: Oxford Open Materials Science
– volume: 71
  start-page: 291
  issue: 3
  year: 2019b
  end-page: 303
  article-title: Spectral element method in the analysis of vibrations of overhead transmission line in damping environment
  publication-title: Structural Engineering and Mechanics
– volume: 338
  start-page: 118087
  year: 2024
  article-title: Deep learning uncertainty quantification for ultrasonic damage identification in composite structures
  publication-title: Composite Structures
– volume: 40
  start-page: 279
  year: 2024
  end-page: 300
  article-title: A deep autoencoder-based approach for the inverse design of an acoustic-absorber
  publication-title: Engineering with Computers
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  end-page: 69
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliability Engineering & System Safety
– volume: 361
  year: 2020
  article-title: Designing phononic crystal with anticipated band gap through a deep learning based data-driven method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  issue: 6
  year: 2018
  article-title: Nanophotonic particle simulation and inverse design using artificial neural networks
  publication-title: Science. The Advocate
– volume: 10
  start-page: 602
  year: 2023
  end-page: 614
  article-title: Yu, deep learning for the design of phononic crystals and elastic metamaterials
  publication-title: Journal of Computational Design and Engineering
– volume: 23
  year: 2024
  article-title: Insights into modern machine learning approaches for bearing fault classification: A systematic literature review
  publication-title: Results in Engineering
– volume: 70
  start-page: 137
  year: 2023
  end-page: 148
  article-title: Energy consumption prediction and optimization of industrial robots based on LSTM
  publication-title: Journal of Manufacturing Systems
– volume: 196
  start-page: 105073
  year: 2024
  article-title: Homogenization and continuum limit of mechanical metamaterials
  publication-title: Mechanics of Materials
– volume: 250
  start-page: 111702
  year: 2022
  article-title: Inverse metamaterial design combining genetic algorithms with asymptotic homogenization schemes
  publication-title: International Journal of Solids and Structures
– volume: 123
  start-page: 106413
  year: 2023
  article-title: A hybrid deep learning approach for the design of 2d low porosity auxetic metamaterials
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 38
  start-page: e16
  year: 2024
  article-title: A semi-supervised anomaly detection approach for detecting mechanical failures, artificial intelligence for engineering design
  publication-title: Analysis and Manufacturing
– volume: 29
  start-page: 3237
  issue: 22
  year: 2022
  end-page: 3262
  article-title: A review on application of mechanical metamaterials for vibration control
  publication-title: Mechanics of Advanced Materials and Structures
– year: 2022
  article-title: Maximized frequency doubling through the inverse design of nonlinear metamaterials
  publication-title: ACS Nano
– volume: 38
  year: 2024
  article-title: A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
  publication-title: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
– volume: 66
  start-page: 1
  issue: 4
  year: 2014
  end-page: 38
  article-title: Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
  publication-title: Applied Mechanics Reviews
– volume: 8
  start-page: 1213
  year: 2020
  end-page: 1225
  article-title: Multitask deep-learning-based design of chiral plasmonic metamaterials
  publication-title: Photonics Research
– volume: 63
  start-page: 2399
  year: 2021
  end-page: 2423
  article-title: Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation
  publication-title: Structural and Multidisciplinary Optimization
– volume: 3
  year: 2023
  article-title: Machine learning assisted intelligent design of meta structures: A review
  publication-title: Microstructures
– volume: 48
  start-page: 101372
  year: 2021
  article-title: Machine-learning based design of digital materials for elastic wave control
  publication-title: Extreme Mechanics Letters
– volume: 62
  issue: B
  year: 2024
  article-title: A blockchain-empowered secure federated domain generalization framework for machinery fault diagnosis
  publication-title: Advanced Engineering Informatics
– volume: 36
  start-page: 306
  year: 2023
  end-page: 316
  article-title: Developing mechanical metamaterials under an adaptable topology optimization design framework
  publication-title: Acta Mechanica Solida Sinica
– volume: 236
  start-page: 2171
  issue: 11
  year: 2022
  end-page: 2210
  article-title: Metamaterials and their applications: An overview, proceedings of the institution of mechanical engineers
  publication-title: Part L: Journal of Materials: Design and Applications
– volume: 13
  start-page: 531
  issue: 4–5
  year: 2006
  end-page: 543
  article-title: Some recent developments in adaptive tuned vibration absorbers/neutralisers
  publication-title: Shock and Vibration
– volume: 56
  year: 2022
  article-title: Inverse design of a topological phononic beam with interface modes
  publication-title: Journal of Physics D: Applied Physics
– volume: 11
  start-page: 3756
  year: 2024
  end-page: 3791
  article-title: Wind turbine vibration management: An integrated analysis of existing solutions, products, and open-source developments
  publication-title: Energy Reports
– volume: 215
  start-page: 110499
  year: 2022
  article-title: Deep-subwavelength lightweight metastructures for low-frequency vibration isolation
  publication-title: Materials & Design
SSID ssj0000954
Score 2.3934696
Snippet Vibration control in structures is essential to mitigate undesired dynamic responses, thereby enhancing stability, safety, and performance under varying...
SourceID cambridge
SourceType Publisher
SubjectTerms Research Article
Title Convolutional autoencoder for on-demand parametric inverse design of local resonator geometry in wind turbine metastructure targeting vibration control
URI https://www.cambridge.org/core/product/identifier/S0890060425100139/type/journal_article
Volume 39
WOSCitedRecordID wos001590406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BYYCBQgHxlgdGrObRNs6IEAUEqpB4qFvl2GfUgQSVUsQv4e9yl7ilgomB1fFZln2Ov7M_fwdwnNk0ROzEMlO2LVmvRGqXaRl0bOKUTnRYvnp_vEl6PdXvp7cL0J--hWFa5UzjoLzJL_OjvVTyp82hrTg0OGreBSplNRFyurAEMk0-tGz6KRj4gV-EJUIwUVSDpavr_kXv-y-dlhnSuBHJrUxvPEs56R8tz-suzO0-3fr_9Xsd1jwiFadVyQYsYN6A-jTbg_CLvwGrc9KFm_B5VuQT77Zkrd_GBUtiWrIgGCyKXFp81rkVrC3-zGm7jBjmzAFBYUvWiCicKHdSQRE_n-GT2RMWXPeDqor3IVnThkihOwoq1ZXU7dsIRUVfp36ICUf73AfhOfdb8NA9vz-7lD7JgzRx2BpL07EuUgoDw890MQ3TjBwmMoq-KlSxIcTaDrQh19Fh1k7QOQIdFhPUhJ5cHG9DLS9y3AERWRVZk1G8j6YVphT6tVpxRNG_cx1Mjd2Fk9kUDfx4vw4qmlsy-DUve3-rvg8rEecGZrZLcAA1GhM8hGUzGQ9fR0fe_b4AoLHuOA
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCbSpEDXw_rasD6nw44V4kcSy8ciaJciWVBgXZGbIUvUkEPsIa9hv2R_d6StdMF62qFXWSQEiTJJ6dNHgE-5TUPEXixzZbuS-UqkdrmWQc8mTulEh9Wr96dRMh6rySR9aMBk8xaGYZXPHAfVTX5VH-1HTX_antoaQ4Pz9tdApcwmQkYXVoFMmw8t234JMj_xO9BiHFbUhNb9cPJ5_PcvnVYV0liJZC2bG8-KTvofzdu8C1ve5-7g9cZ9CG99RCpu6pYjaGBxDAebag_Cb_5j2N-iLjyB3_2yWHuzJWm9WpZMiWlJgsJgURbS4kwXVjC3-IzLdhkxLRgDgsJWqBFROlF5UkEZP5_hk9h3LLnvL-oqfk5Jmhwipe4oqFXXVLerOYoavk7jEGvO9nkMwmPu38G3u9vH_kD6Ig_SxGFnKU3PukgpDAw_08U0THMymMgo-qpQxYYi1m6gDZmODvNugs5R0GExQU3Rk4vj99AsygI_gIisiqzJKd9H0wlTSv06nTii7N-5HqbGnsL18xJlfr4XWQ1zS7IX63L2f90_wt7g8csoG92Ph-fwJuI6wYx8CS6gSfODl7Br1svpYn7lTfEPAvnxLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+autoencoder+for+on-demand+parametric+inverse+design+of+local+resonator+geometry+in+wind+turbine+metastructure+targeting+vibration+control&rft.jtitle=AI+EDAM&rft.au=Naeini%2C+Mohammadreza+Sahaf&rft.au=Machado%2C+Marcela&rft.au=Dutkiewicz%2C+Maciej&rft.date=2025-10-10&rft.pub=Cambridge+University+Press&rft.issn=0890-0604&rft.eissn=1469-1760&rft.volume=39&rft_id=info:doi/10.1017%2FS0890060425100139&rft.externalDocID=10_1017_S0890060425100139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-0604&client=summon