Parameterised and Fine-Grained Subgraph Counting, Modulo 2

Given a class of graphs H , the problem ⊕ Sub ( H ) is defined as follows. The input is a graph H ∈ H together with an arbitrary graph G . The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H . The goal of this research is to determine for which classes H the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 86; H. 4; S. 944 - 1005
Hauptverfasser: Goldberg, Leslie Ann, Roth, Marc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2024
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given a class of graphs H , the problem ⊕ Sub ( H ) is defined as follows. The input is a graph H ∈ H together with an arbitrary graph G . The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H . The goal of this research is to determine for which classes H the problem ⊕ Sub ( H ) is fixed-parameter tractable (FPT), i.e., solvable in time f ( | H | ) · | G | O ( 1 ) . Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕ Sub ( H ) is FPT if and only if the class of allowed patterns H is matching splittable , which means that for some fixed B , every H ∈ H can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most  B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes H , and (II) all tree pattern classes, i.e., all classes H such that every H ∈ H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).
AbstractList Given a class of graphs $${\mathcal {H}}$$ H , the problem $$\oplus \text {{Sub}}({\mathcal {H}})$$ ⊕ Sub ( H ) is defined as follows. The input is a graph $$H\in {\mathcal {H}}$$ H ∈ H together with an arbitrary graph G . The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H . The goal of this research is to determine for which classes $${\mathcal {H}}$$ H the problem $$\oplus \text {{Sub}}({\mathcal {H}})$$ ⊕ Sub ( H ) is fixed-parameter tractable (FPT), i.e., solvable in time $$f(|H|)\cdot |G|^{O(1)}$$ f ( | H | ) · | G | O ( 1 ) . Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that $$\oplus \text {{Sub}}({\mathcal {H}})$$ ⊕ Sub ( H ) is FPT if and only if the class of allowed patterns $${\mathcal {H}}$$ H is matching splittable , which means that for some fixed B , every $$H \in {\mathcal {H}}$$ H ∈ H can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most  B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes $${\mathcal {H}}$$ H , and (II) all tree pattern classes, i.e., all classes $${\mathcal {H}}$$ H such that every $$H\in {\mathcal {H}}$$ H ∈ H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).
Given a class of graphs H , the problem ⊕ Sub ( H ) is defined as follows. The input is a graph H ∈ H together with an arbitrary graph G . The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H . The goal of this research is to determine for which classes H the problem ⊕ Sub ( H ) is fixed-parameter tractable (FPT), i.e., solvable in time f ( | H | ) · | G | O ( 1 ) . Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕ Sub ( H ) is FPT if and only if the class of allowed patterns H is matching splittable , which means that for some fixed B , every H ∈ H can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most  B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes H , and (II) all tree pattern classes, i.e., all classes H such that every H ∈ H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).
Given a class of graphs H, the problem ⊕Sub(H) is defined as follows. The input is a graph H∈H together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H. The goal of this research is to determine for which classes H the problem ⊕Sub(H) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|)·|G|O(1). Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕Sub(H) is FPT if and only if the class of allowed patterns H is matching splittable, which means that for some fixed B, every H∈H can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes H, and (II) all tree pattern classes, i.e., all classes H such that every H∈H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).
Author Roth, Marc
Goldberg, Leslie Ann
Author_xml – sequence: 1
  givenname: Leslie Ann
  surname: Goldberg
  fullname: Goldberg, Leslie Ann
  organization: Department of Computer Science, University of Oxford
– sequence: 2
  givenname: Marc
  surname: Roth
  fullname: Roth, Marc
  email: marc.roth.cs@gmail.com
  organization: Department of Computer Science, University of Oxford
BookMark eNp9kE9LAzEQxYNUsK1-AU8LXl2dyZ_drjcptgoVBfUcspukbmmTmuwe_PZNXcGbh5lhhvfewG9CRs47Q8glwg0ClLcRgAuWA02FWM5yOCFj5IzmIDiOyBiOR15geUYmMW4AkJZVMSZ3ryqonelMaKPRmXI6W7TO5Mug0tDZW1-vg9p_ZnPfu6516-vs2et-6zN6Tk6t2kZz8Tun5GPx8D5_zFcvy6f5_SpvGPIudV3UVlega2ZsI6DkFeVa2UYxYWpLxcyCEDODrIG0CSZKVavG1hwKtBWbkqshdx_8V29iJze-Dy69lAyQAy0Qi6Sig6oJPsZgrNyHdqfCt0SQR0ZyYCQTI_nDSEIyscEUk9itTfiL_sd1APjeajY
Cites_doi 10.4230/LIPIcs.MFCS.2021.84
10.1007/978-3-662-47672-7_19
10.1145/3055399.3055502
10.4230/LIPIcs.ICALP.2021.108
10.1007/978-1-4471-5559-1
10.1137/1.9781611973730.111
10.1109/FOCS.2014.22
10.1007/978-3-642-39206-1_30
10.1016/j.ic.2005.05.001
10.1006/jcss.2000.1727
10.4230/LIPIcs.ESA.2021.34
10.1137/S0097539703427203
10.1098/rsif.2010.0063
10.1145/3038912.3052653
10.1007/978-3-319-21275-3
10.1145/3519935.3520075
10.1145/3520240
10.1007/978-3-319-21233-3_5
10.1145/210332.210337
10.1016/j.jctb.2018.03.007
10.1038/ncomms3241
10.1016/j.tcs.2004.08.008
10.1137/1.9781611973730.42
10.1007/978-3-540-70575-8_48
10.1007/s00453-021-00811-0
10.1093/bioinformatics/btn163
10.4230/LIPIcs.ICALP.2020.5
10.1007/s00453-021-00894-9
10.1007/3-540-29953-X
10.1137/0220053
10.1016/j.jctb.2008.06.004
10.1126/science.298.5594.824
10.1016/j.jcss.2006.04.007
10.1126/science.1089167
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-023-01178-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1005
ExternalDocumentID 10_1007_s00453_023_01178_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c314t-c3d6bfd90db3efc5074924dafca35ebf258f0558e13c0f255357abacfb4061f93
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001118762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 07:46:08 EST 2025
Sat Nov 29 02:20:34 EST 2025
Fri Feb 21 02:44:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Theory of computation
Problems
Subgraph counting
Fine-grained complexity
Parameterised complexity
reductions and completeness Mathematics of computing
Discrete mathematics
Modular counting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c3d6bfd90db3efc5074924dafca35ebf258f0558e13c0f255357abacfb4061f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00453-023-01178-0
PQID 3014026116
PQPubID 2043795
PageCount 62
ParticipantIDs proquest_journals_3014026116
crossref_primary_10_1007_s00453_023_01178_0
springer_journals_10_1007_s00453_023_01178_0
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X
TranNHChoiKPZhangLCounting motifs in the human interactomeNat. Commun.2013411810.1038/ncomms3241
GroheMMarxDOn tree width, bramble size, and expansionJ. Comb. Theory Ser. B2009991218228246782710.1016/j.jctb.2008.06.004
Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18–21, 2014, pp. 130–139. IEEE Computer Society (2014). https://doi.org/10.1109/FOCS.2014.22
DörflerJRothMSchmittJWellnitzPCounting induced subgraphs: An algebraic approach to #w[1]-hardnessAlgorithmica2022842379404438171610.1007/s00453-021-00894-9
AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced subgraph isomorphisms. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP), pp. 587–596. Springer (2008). https://doi.org/10.1007/978-3-540-70575-8_48
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1
Roth, M., Schmitt, J., Wellnitz, P.: Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders. CoRR arXiv:2011.03433 (2020)
Curticapean, R., Dell, H., Husfeldt, T.: Modular counting of subgraphs: matchings, matching-splittable graphs, and paths. In: Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on Algorithms, ESA 2021, September 6–8, 2021, Lisbon, Portugal (Virtual Conference), LIPIcs, vol. 204, pp. 1–17. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.34
ImpagliazzoRPaturiROn the complexity of k-satJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.1727
AlonNDaoPHajirasoulihaIHormozdiariFCenk SahinalpSBiomolecular network motif counting and discovery by color codingBioinformatics20082413i241i24910.1093/bioinformatics/btn163
Curticapean, R.: Counting matchings of size k is w[1]-hard. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.) Automata, Languages, and Programming—40th International Colloquium, ICALP 2013, Riga, Latvia, July 8–12, 2013, Proceedings, Part I, Lecture Notes in Computer Science, vol. 7965, pp. 352–363. Springer (2013). https://doi.org/10.1007/978-3-642-39206-1_30
Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A., Wellnitz, P.: Parameterized counting and Cayley graph expanders. SIAM J. Discrete Math., to appear
HarveyDJWoodDRThe treewidth of line graphsJ. Comb. Theory Ser. B2018132157179382030210.1016/j.jctb.2018.03.007
ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.007
Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 1671–1680. SIAM (2015). https://doi.org/10.1137/1.9781611973730.111
Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part I, Lecture Notes in Computer Science, vol. 9134, pp. 231–242. Springer (2015). https://doi.org/10.1007/978-3-662-47672-7_19
Abboud, A., Feller, S., Weimann, O.: On the fine-grained complexity of parity problems. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany (Virtual Conference), LIPIcs, vol. 168, pp. 1–19. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.5
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3
Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 210–223. ACM (2017). https://doi.org/10.1145/3055399.3055502
Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and turing kernels. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 616–629. SIAM (2015). https://doi.org/10.1137/1.9781611973730.42
MiloRItzkovitzSKashtanNLevittRShen-OrrSAyzenshtatIShefferMAlonUSuperfamilies of evolved and designed networksScience200430356631538154210.1126/science.1089167
Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A.: Parameterized (modular) counting and Cayley graph expanders. CoRR arXiv:2104.14596 (2021)
DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.008
Schiller, B., Jager, S., Hamacher, K., Strufe, T.: StreaM—a stream-based algorithm for counting motifs in dynamic graphs. In: Proceedings of the 2nd International Conference on Algorithms for Computational Biology (AlCoB), pp. 53–67 (2015). https://doi.org/10.1007/978-3-319-21233-3_5
MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience2002298559482482710.1126/science.298.5594.824
KuchaievOMilenkovićTMemiševićVHayesWPržuljNTopological network alignment uncovers biological function and phylogenyJ. R. Soc. Interface20107501341135410.1098/rsif.2010.0063
Bulatov, A.A., Kazeminia, A.: Complexity classification of counting graph homomorphisms modulo a prime number. In: Leonardi, S., Gupta, A. (eds.) STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pp. 1024–1037. ACM (2022). https://doi.org/10.1145/3519935.3520075
Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A.: Parameterized (modular) counting and Cayley graph expanders. In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23–27, 2021, Tallinn, Estonia, LIPIcs, vol. 202, pp. 1–15. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.84
Roth, M., Schmitt, J., Wellnitz, P.: Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, (2021), Glasgow, Scotland (Virtual Conference), LIPIcs, vol. 198, pp. 1–16. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.108
ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.001
BeraSKGishbolinerLLevanzovYSeshadhriCShapiraACounting subgraphs in degenerate graphsJ. ACM2022693121444853210.1145/3520240
BressanMFaster algorithms for counting subgraphs in sparse graphsAlgorithmica202183825782605428947010.1007/s00453-021-00811-0
FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S0097539703427203
TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/0220053
Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph clustering. In: Proceedings of the 26th International Conference on World Wide Web (WWW), pp. 1451–1460 (2017). https://doi.org/10.1145/3038912.3052653
O Kuchaiev (1178_CR25) 2010; 7
NH Tran (1178_CR35) 2013; 4
1178_CR15
1178_CR37
1178_CR14
1178_CR36
R Milo (1178_CR26) 2002; 298
J Chen (1178_CR8) 2005; 201
1178_CR18
M Grohe (1178_CR21) 2009; 99
R Impagliazzo (1178_CR23) 2001; 62
J Dörfler (1178_CR17) 2022; 84
M Bressan (1178_CR6) 2021; 83
DJ Harvey (1178_CR22) 2018; 132
SK Bera (1178_CR4) 2022; 69
J Chen (1178_CR9) 2006; 72
1178_CR31
1178_CR30
1178_CR13
V Dalmau (1178_CR16) 2004; 329
1178_CR12
1178_CR11
1178_CR33
S Toda (1178_CR34) 1991; 20
1178_CR10
1178_CR32
1178_CR28
1178_CR1
N Alon (1178_CR3) 1995; 42
1178_CR29
J Flum (1178_CR19) 2004; 33
1178_CR7
R Milo (1178_CR27) 2004; 303
1178_CR5
N Alon (1178_CR2) 2008; 24
1178_CR20
1178_CR24
References_xml – reference: TodaSPP is as hard as the polynomial-time hierarchySIAM J. Comput.1991205865877111565510.1137/0220053
– reference: Roth, M., Schmitt, J., Wellnitz, P.: Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders. CoRR arXiv:2011.03433 (2020)
– reference: DörflerJRothMSchmittJWellnitzPCounting induced subgraphs: An algebraic approach to #w[1]-hardnessAlgorithmica2022842379404438171610.1007/s00453-021-00894-9
– reference: AlonNDaoPHajirasoulihaIHormozdiariFCenk SahinalpSBiomolecular network motif counting and discovery by color codingBioinformatics20082413i241i24910.1093/bioinformatics/btn163
– reference: AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
– reference: Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and turing kernels. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 616–629. SIAM (2015). https://doi.org/10.1137/1.9781611973730.42
– reference: Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 210–223. ACM (2017). https://doi.org/10.1145/3055399.3055502
– reference: Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006). https://doi.org/10.1007/3-540-29953-X
– reference: Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A.: Parameterized (modular) counting and Cayley graph expanders. In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23–27, 2021, Tallinn, Estonia, LIPIcs, vol. 202, pp. 1–15. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.84
– reference: Williams, V.V., Wang, J.R., Williams, R.R., Yu, H.: Finding four-node subgraphs in triangle time. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 1671–1680. SIAM (2015). https://doi.org/10.1137/1.9781611973730.111
– reference: FlumJGroheMThe parameterized complexity of counting problemsSIAM J. Comput.2004334892922206533810.1137/S0097539703427203
– reference: ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.007
– reference: MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience2002298559482482710.1126/science.298.5594.824
– reference: GroheMMarxDOn tree width, bramble size, and expansionJ. Comb. Theory Ser. B2009991218228246782710.1016/j.jctb.2008.06.004
– reference: ImpagliazzoRPaturiROn the complexity of k-satJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.1727
– reference: Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3
– reference: Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1
– reference: ChenJChorBFellowsMHuangXJuedesDWKanjIAXiaGTight lower bounds for certain parameterized NP-hard problemsInf. Comput.20052012216231216571610.1016/j.ic.2005.05.001
– reference: BeraSKGishbolinerLLevanzovYSeshadhriCShapiraACounting subgraphs in degenerate graphsJ. ACM2022693121444853210.1145/3520240
– reference: TranNHChoiKPZhangLCounting motifs in the human interactomeNat. Commun.2013411810.1038/ncomms3241
– reference: Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced subgraph isomorphisms. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP), pp. 587–596. Springer (2008). https://doi.org/10.1007/978-3-540-70575-8_48
– reference: BressanMFaster algorithms for counting subgraphs in sparse graphsAlgorithmica202183825782605428947010.1007/s00453-021-00811-0
– reference: Curticapean, R., Dell, H., Husfeldt, T.: Modular counting of subgraphs: matchings, matching-splittable graphs, and paths. In: Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on Algorithms, ESA 2021, September 6–8, 2021, Lisbon, Portugal (Virtual Conference), LIPIcs, vol. 204, pp. 1–17. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.34
– reference: Schiller, B., Jager, S., Hamacher, K., Strufe, T.: StreaM—a stream-based algorithm for counting motifs in dynamic graphs. In: Proceedings of the 2nd International Conference on Algorithms for Computational Biology (AlCoB), pp. 53–67 (2015). https://doi.org/10.1007/978-3-319-21233-3_5
– reference: HarveyDJWoodDRThe treewidth of line graphsJ. Comb. Theory Ser. B2018132157179382030210.1016/j.jctb.2018.03.007
– reference: Abboud, A., Feller, S., Weimann, O.: On the fine-grained complexity of parity problems. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020, Saarbrücken, Germany (Virtual Conference), LIPIcs, vol. 168, pp. 1–19. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.5
– reference: MiloRItzkovitzSKashtanNLevittRShen-OrrSAyzenshtatIShefferMAlonUSuperfamilies of evolved and designed networksScience200430356631538154210.1126/science.1089167
– reference: Curticapean, R.: Counting matchings of size k is w[1]-hard. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.) Automata, Languages, and Programming—40th International Colloquium, ICALP 2013, Riga, Latvia, July 8–12, 2013, Proceedings, Part I, Lecture Notes in Computer Science, vol. 7965, pp. 352–363. Springer (2013). https://doi.org/10.1007/978-3-642-39206-1_30
– reference: DalmauVJonssonPThe complexity of counting homomorphisms seen from the other sideTheor. Comput. Sci.20043291–3315323210365510.1016/j.tcs.2004.08.008
– reference: Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph clustering. In: Proceedings of the 26th International Conference on World Wide Web (WWW), pp. 1451–1460 (2017). https://doi.org/10.1145/3038912.3052653
– reference: Bulatov, A.A., Kazeminia, A.: Complexity classification of counting graph homomorphisms modulo a prime number. In: Leonardi, S., Gupta, A. (eds.) STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pp. 1024–1037. ACM (2022). https://doi.org/10.1145/3519935.3520075
– reference: KuchaievOMilenkovićTMemiševićVHayesWPržuljNTopological network alignment uncovers biological function and phylogenyJ. R. Soc. Interface20107501341135410.1098/rsif.2010.0063
– reference: Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A., Wellnitz, P.: Parameterized counting and Cayley graph expanders. SIAM J. Discrete Math., to appear
– reference: Peyerimhoff, N., Roth, M., Schmitt, J., Stix, J., Vdovina, A.: Parameterized (modular) counting and Cayley graph expanders. CoRR arXiv:2104.14596 (2021)
– reference: Roth, M., Schmitt, J., Wellnitz, P.: Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, (2021), Glasgow, Scotland (Virtual Conference), LIPIcs, vol. 198, pp. 1–16. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.108
– reference: Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-cover number counts. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18–21, 2014, pp. 130–139. IEEE Computer Society (2014). https://doi.org/10.1109/FOCS.2014.22
– reference: Björklund, A., Dell, H., Husfeldt, T.: The parity of set systems under random restrictions with applications to exponential time problems. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part I, Lecture Notes in Computer Science, vol. 9134, pp. 231–242. Springer (2015). https://doi.org/10.1007/978-3-662-47672-7_19
– ident: 1178_CR28
  doi: 10.4230/LIPIcs.MFCS.2021.84
– ident: 1178_CR5
  doi: 10.1007/978-3-662-47672-7_19
– ident: 1178_CR13
  doi: 10.1145/3055399.3055502
– ident: 1178_CR32
  doi: 10.4230/LIPIcs.ICALP.2021.108
– ident: 1178_CR18
  doi: 10.1007/978-1-4471-5559-1
– ident: 1178_CR30
– ident: 1178_CR37
  doi: 10.1137/1.9781611973730.111
– ident: 1178_CR14
  doi: 10.1109/FOCS.2014.22
– ident: 1178_CR11
  doi: 10.1007/978-3-642-39206-1_30
– volume: 201
  start-page: 216
  issue: 2
  year: 2005
  ident: 1178_CR8
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2005.05.001
– volume: 62
  start-page: 367
  issue: 2
  year: 2001
  ident: 1178_CR23
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– ident: 1178_CR12
  doi: 10.4230/LIPIcs.ESA.2021.34
– volume: 33
  start-page: 892
  issue: 4
  year: 2004
  ident: 1178_CR19
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539703427203
– volume: 7
  start-page: 1341
  issue: 50
  year: 2010
  ident: 1178_CR25
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0063
– ident: 1178_CR36
  doi: 10.1145/3038912.3052653
– ident: 1178_CR15
  doi: 10.1007/978-3-319-21275-3
– ident: 1178_CR7
  doi: 10.1145/3519935.3520075
– volume: 69
  start-page: 1
  issue: 3
  year: 2022
  ident: 1178_CR4
  publication-title: J. ACM
  doi: 10.1145/3520240
– ident: 1178_CR33
  doi: 10.1007/978-3-319-21233-3_5
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  ident: 1178_CR3
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– volume: 132
  start-page: 157
  year: 2018
  ident: 1178_CR22
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2018.03.007
– ident: 1178_CR29
– ident: 1178_CR31
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 1178_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3241
– volume: 329
  start-page: 315
  issue: 1–3
  year: 2004
  ident: 1178_CR16
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2004.08.008
– ident: 1178_CR24
  doi: 10.1137/1.9781611973730.42
– ident: 1178_CR10
  doi: 10.1007/978-3-540-70575-8_48
– volume: 83
  start-page: 2578
  issue: 8
  year: 2021
  ident: 1178_CR6
  publication-title: Algorithmica
  doi: 10.1007/s00453-021-00811-0
– volume: 24
  start-page: i241
  issue: 13
  year: 2008
  ident: 1178_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn163
– ident: 1178_CR1
  doi: 10.4230/LIPIcs.ICALP.2020.5
– volume: 84
  start-page: 379
  issue: 2
  year: 2022
  ident: 1178_CR17
  publication-title: Algorithmica
  doi: 10.1007/s00453-021-00894-9
– ident: 1178_CR20
  doi: 10.1007/3-540-29953-X
– volume: 20
  start-page: 865
  issue: 5
  year: 1991
  ident: 1178_CR34
  publication-title: SIAM J. Comput.
  doi: 10.1137/0220053
– volume: 99
  start-page: 218
  issue: 1
  year: 2009
  ident: 1178_CR21
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2008.06.004
– volume: 298
  start-page: 824
  issue: 5594
  year: 2002
  ident: 1178_CR26
  publication-title: Science
  doi: 10.1126/science.298.5594.824
– volume: 72
  start-page: 1346
  issue: 8
  year: 2006
  ident: 1178_CR9
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2006.04.007
– volume: 303
  start-page: 1538
  issue: 5663
  year: 2004
  ident: 1178_CR27
  publication-title: Science
  doi: 10.1126/science.1089167
SSID ssj0012796
Score 2.3960087
Snippet Given a class of graphs H , the problem ⊕ Sub ( H ) is defined as follows. The input is a graph H ∈ H together with an arbitrary graph G . The problem is to...
Given a class of graphs $${\mathcal {H}}$$ H , the problem $$\oplus \text {{Sub}}({\mathcal {H}})$$ ⊕ Sub ( H ) is defined as follows. The input is a graph...
Given a class of graphs H, the problem ⊕Sub(H) is defined as follows. The input is a graph H∈H together with an arbitrary graph G. The problem is to compute,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 944
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph matching
Graph theory
Lower bounds
Mathematics of Computing
Theory of Computation
Title Parameterised and Fine-Grained Subgraph Counting, Modulo 2
URI https://link.springer.com/article/10.1007/s00453-023-01178-0
https://www.proquest.com/docview/3014026116
Volume 86
WOSCitedRecordID wos001118762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5o9eDFumLdyMGbDSSTWb1JsXqxFDd6G7KCIFPp4u_3JZ1pUfSgl4GZhDB85OV94S0fwIUx2uqMF1Q5ntLYMEYLVTgqU2uQbRhuhApiE9lgkI9GxbAuCps22e5NSDKc1MtiN88-fMzR5_9w3xd2HTbQ3eXeHB8eX5axgygLqlxed57G6KDrUpmf1_jqjlYc81tYNHibfvt__7kD2zW7JNeL7bALa7bag3aj3EBqQ96Hq6H0SVmhT7M1RFaG9JFu0lsvGIEf8DgJnaxJr5aS6JL7sZm_jUl0AM_9m6feHa1VFKgWPJ7h06TKmYIZJazTyP9ivHMZ6bQUiVUuSnLHkiS3XGiGb4lIMqmkdsr7eleIQ2hV48oeARFZziSPpYydjRnOQDYorHFRzqVLlO3AZQNm-b5ollEu2yIHWEqEpQywlKwDpw3eZW040zLc-PBWx9MOdBt8V8O_r3b8t-knsBUhPVnk4JxCazaZ2zPY1B-z1-nkPGyoT2F5xJQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFL1oFXRjfWK1ahbubGAyybzcSbFWbEvRKt2FZJKAIK304febpDMtii50MzCTEIZDknsu93EALpXKdZ6QDEtDYsxUEOBMZgaLWCvLNhRRVHqxiaTXS4fDrF8UhU3LbPcyJOlv6mWxm2MfLubo8n-I6wu7DhvMWiyXyPf49LKMHYSJV-VyuvOYWQNdlMr8vMZXc7TimN_Cot7atKr_-89d2CnYJbpZbIc9WNOjfaiWyg2oOMgHcN0XLinL92nWComRQi1LN_GdE4ywH-x14jtZo2YhJdFA3bGav41ReAjPrdtBs40LFQWcU8Jm9qliaVQWKEm1yS3_Y9bnUsLkgkZamjBKTRBFqSY0D-xbRKNESJEb6Wy9yegRVEbjkT4GRJM0EIQJwYxmgZ1h2SDVyoQpESaSugZXJZj8fdEsgy_bIntYuIWFe1h4UIN6iTcvDs6Ue4_PenUkrkGjxHc1_PtqJ3-bfgFb7UG3wzv3vYdT2A4tVVnk49ShMpvM9Rls5h-z1-nk3G-uT6Ljx3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFPHF-YnTqXnwzZU1Tfrlm0yroo6BH-ytJE0CgnRj6_z9Jmm7qeiD-FJoG0I5JM253HvPATgVIpNZiGOHKxw4VLiuE_NYOSyQQrMNgQXh1mwi7Pej4TAefOrit9XudUqy7GkwKk150R0L1Z03vhkmYvKPphYIG43YZVihxjTIxOuPL_M8ghdahy7jQe9QfVhXbTM_z_H1aFrwzW8pUnvyJM3_f_MmbFSsE12Uy2QLlmS-Dc3a0QFVG3wHzgfMFGtZ_WYpEMsFSjQNda6NkYR-oH8zVuEa9SqLiQ56GInZ2wh5u_CcXD31bpzKXcHJCKaFvoqAKxG7ghOpMs0LqY7FBFMZI77kyvMj5fp-JDHJXH3nEz9knGWKGw6gYrIHjXyUy31AJIxchiljVEnq6hGaJRIplBdhpnwuW3BWA5uOSxGNdC6XbGFJNSyphSV1W9CusU-rDTVNbSSooz0ctKBTY714_ftsB38bfgJrg8skvb_t3x3CuqcZTFmm04ZGMZnJI1jN3ovX6eTYrrMPitXQXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterised+and+Fine-Grained+Subgraph+Counting%2C+Modulo+2&rft.jtitle=Algorithmica&rft.au=Goldberg%2C+Leslie+Ann&rft.au=Roth%2C+Marc&rft.date=2024-04-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=4&rft.spage=944&rft.epage=1005&rft_id=info:doi/10.1007%2Fs00453-023-01178-0&rft.externalDocID=10_1007_s00453_023_01178_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon