Deterministic Dynamic Matching in Worst-Case Update Time
We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times O ^ ( n ) and O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ra...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 85; H. 12; S. 3741 - 3765 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present deterministic algorithms for maintaining a
(
3
/
2
+
ϵ
)
and
(
2
+
ϵ
)
-approximate maximum matching in a fully dynamic graph with worst-case update times
O
^
(
n
)
and
O
~
(
1
)
respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio
(
2
-
δ
)
(for any
δ
>
0
) and
(
2
+
ϵ
)
were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times
O
(
n
3
/
4
)
and
O
ϵ
(
n
)
respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are
O
ϵ
(
n
)
and
O
~
(
1
)
which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving
(
3
/
2
+
ϵ
)
approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that
H
is a
(
α
,
δ
)
-approximate matching sparsifier if at all times
H
satisfies that
μ
(
H
)
·
α
+
δ
·
n
≥
μ
(
G
)
(define
(
α
,
δ
)
-approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a
(
3
/
2
+
ϵ
,
δ
)
-approximate matching sparsifier. We further show how to reduce the maintenance of an
α
-approximate maximum matching to the maintenance of an
(
α
,
δ
)
-approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of
O
^
(
1
)
or
O
~
(
1
)
and is deterministic or randomized against an adaptive adversary respectively. To achieve
(
2
+
ϵ
)
-approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time. |
|---|---|
| AbstractList | We present deterministic algorithms for maintaining a
$$(3/2 + \epsilon )$$
(
3
/
2
+
ϵ
)
and
$$(2 + \epsilon )$$
(
2
+
ϵ
)
-approximate maximum matching in a fully dynamic graph with worst-case update times
$${\hat{O}}(\sqrt{n})$$
O
^
(
n
)
and
$${\tilde{O}}(1)$$
O
~
(
1
)
respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio
$$(2 - \delta )$$
(
2
-
δ
)
(for any
$$\delta > 0$$
δ
>
0
) and
$$(2 + \epsilon )$$
(
2
+
ϵ
)
were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times
$$O(n^{3/4})$$
O
(
n
3
/
4
)
and
$$O_\epsilon (\sqrt{n})$$
O
ϵ
(
n
)
respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are
$$O_\epsilon (\sqrt{n})$$
O
ϵ
(
n
)
and
$${\tilde{O}}(1)$$
O
~
(
1
)
which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving
$$(3/2 + \epsilon )$$
(
3
/
2
+
ϵ
)
approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that
H
is a
$$(\alpha , \delta )$$
(
α
,
δ
)
-approximate matching sparsifier if at all times
H
satisfies that
$$\mu (H) \cdot \alpha + \delta \cdot n \ge \mu (G)$$
μ
(
H
)
·
α
+
δ
·
n
≥
μ
(
G
)
(define
$$(\alpha , \delta )$$
(
α
,
δ
)
-approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a
$$(3/2 + \epsilon , \delta )$$
(
3
/
2
+
ϵ
,
δ
)
-approximate matching sparsifier. We further show how to reduce the maintenance of an
$$\alpha $$
α
-approximate maximum matching to the maintenance of an
$$(\alpha , \delta )$$
(
α
,
δ
)
-approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of
$${\hat{O}}(1)$$
O
^
(
1
)
or
$${\tilde{O}}(1)$$
O
~
(
1
)
and is deterministic or randomized against an adaptive adversary respectively. To achieve
$$(2 + \epsilon )$$
(
2
+
ϵ
)
-approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time. We present deterministic algorithms for maintaining a (3/2+ϵ) and (2+ϵ)-approximate maximum matching in a fully dynamic graph with worst-case update times O^(n) and O~(1) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio (2-δ) (for any δ>0) and (2+ϵ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times O(n3/4) and Oϵ(n) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are Oϵ(n) and O~(1) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving (3/2+ϵ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a (α,δ)-approximate matching sparsifier if at all times H satisfies that μ(H)·α+δ·n≥μ(G) (define (α,δ)-approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a (3/2+ϵ,δ)-approximate matching sparsifier. We further show how to reduce the maintenance of an α-approximate maximum matching to the maintenance of an (α,δ)-approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of O^(1) or O~(1) and is deterministic or randomized against an adaptive adversary respectively. To achieve (2+ϵ)-approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time. We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times O ^ ( n ) and O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio ( 2 - δ ) (for any δ > 0 ) and ( 2 + ϵ ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times O ( n 3 / 4 ) and O ϵ ( n ) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are O ϵ ( n ) and O ~ ( 1 ) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving ( 3 / 2 + ϵ ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a ( α , δ ) -approximate matching sparsifier if at all times H satisfies that μ ( H ) · α + δ · n ≥ μ ( G ) (define ( α , δ ) -approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a ( 3 / 2 + ϵ , δ ) -approximate matching sparsifier. We further show how to reduce the maintenance of an α -approximate maximum matching to the maintenance of an ( α , δ ) -approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of O ^ ( 1 ) or O ~ ( 1 ) and is deterministic or randomized against an adaptive adversary respectively. To achieve ( 2 + ϵ ) -approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time. |
| Author | Kiss, Peter |
| Author_xml | – sequence: 1 givenname: Peter surname: Kiss fullname: Kiss, Peter email: peter.kiss@warwick.ac.uk organization: Department of Computer Science, University of Warwick |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-AUibNh_YjtHFHLSyriEsTRcpNNSUWcYqdS--8xBIkbh9057Mys9M3IxPceCblkcM0A9E0EkLmgwNMwljN6OCFTJgWnkEs2IVNg2lCpmD4jsxi3AIzrQk2JWeKAoWt9G4e2ypZH77qkz26o3lu_yVqfvfUhDnThImavu9oNmJVth-fktHEfES9-dU7K-7ty8UhXLw9Pi9sVrQSTQ9qm5oWSUBdQOcabSkvRNE29zrVARFkobPRaGshdvtaglCzQ1bqo0tU4MSdXY-0u9J97jIPd9vvg00fLjTFKMG5kcvHRVYU-xoCN3YW2c-FoGdhvQHYEZBMg-wPIHlJIjKGYzH6D4a_6n9QXMaxqOw |
| Cites_doi | 10.1145/225058.225269 10.1137/1.9781611977066.2 10.1145/1806689.1806772 10.1145/3355903 10.1145/2213977.2213987 10.1145/502090.502095 10.1137/1.9781611975482.98 10.1109/FOCS.2019.00032 10.1109/FOCS.2016.43 10.1145/3357713.3384258 10.1137/130914140 10.1137/1.9781611974331.ch50 10.1109/FOCS.2014.53 10.1007/978-3-662-47672-7_14 10.1137/1.9781611974782.30 10.7146/brics.v3i25.20006 10.1137/1.9781611975482.115 10.1109/FOCS.2013.65 10.1145/3313276.3316376 10.1145/3357713.3384340 10.1137/1.9781611975482.114 10.1145/509907.510003 10.1145/3406325.3451113 10.1137/1.9781611973105.81 10.1137/1.9781611975994.152 10.1137/1.9781611974331.ch93 10.1007/978-3-319-59250-3_8 10.1145/3055399.3055493 10.1137/140998925 10.1145/2897518.2897568 10.1109/FOCS46700.2020.00108 10.1145/2746539.2746609 10.1109/ALLERTON.2008.4797639 10.1145/3055399.3055447 10.1145/1806689.1806753 10.1134/S1995080212010052 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-023-01151-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 3765 |
| ExternalDocumentID | 10_1007_s00453_023_01151_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c314t-c38d29640d90ca12fc743fffdb573eee496ef7b4805a5b706649ead79c3ee8a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 08:12:43 EST 2025 Sat Nov 29 02:20:33 EST 2025 Fri Feb 21 02:41:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Matching Dynamic algorithms Approximate matching EDCS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-c38d29640d90ca12fc743fffdb573eee496ef7b4805a5b706649ead79c3ee8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s00453-023-01151-x |
| PQID | 2888631284 |
| PQPubID | 2043795 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2888631284 crossref_primary_10_1007_s00453_023_01151_x springer_journals_10_1007_s00453_023_01151_x |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Amir, A., Pettie, S., Porat, E.: Higher lower bounds from the 3sum conjecture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1272–1287. SIAM (2016) Solomon, N., Solomon, S.: A generalized matching reconfiguration problem. In: 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, 6–8 Jan, 2021, Virtual Conference, LIPIcs (2021) Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and the simultaneous communication model. In: Krauthgamer R. (ed.), Proceedings of the Twenty-Seventh Annual (ACM-SIAM) Symposium on Discrete Algorithms, SODA 2016, 10–12 Jan, Arlington, VA, USA, pp. 1345–1364. SIAM (2016) Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002) Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS Rep. Ser. 3(25) (1996) Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: breaking the polynomial barrier for worst-case time bounds. In: ICALP (2017) Abboud, A., Addanki, R., Grandoni, F., Panigrahi, D., Saha, B.: Dynamic set cover: improved algorithms and lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 114–125 (2019) HolmJDe LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM (JACM)2001484723760214492810.1145/502090.5020951127.68408 BaswanaSGuptaMSenSFully dynamic maximal matching in o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log (n))$$\end{document} update timeSIAM J. Comput.201544188113331356810.1137/1309141401314.05155 Grandoni, F., Schwiegelshohn, C., Solomon, S., Uzrad, A.: Maintaining an edcs in general graphs: simpler, density-sensitive and with worst-case time bounds (2021). arXiv:2108.08825 BernsteinASteinCFully dynamic matching in bipartite graphsInternational Colloquium on Automata, Languages, and Programming2015BerlinSpringer16717910.1007/978-3-662-47672-7_14 Assadi, S., Behnezhad, S.: Towards a unified theory of sparsification for matching problems. In: 2nd Symposium on Simplicity in Algorithms, SOSA 2019, 8–9 Jan, 2019, San Diego, CA, USA (2019) Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow, Scotland (Virtual Conference), pp. 19:1–19:13 (2021) Kiss, P., Bhattacharya, S.: Deterministic rounding of dynamic fractional matchings. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow (2021) Nanongkai, D., Saranurak, T..: Dynamic spanning forest with worst-case update time: adaptive, las vegas, and o(n1/2-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(n^{1/2 - \epsilon })$$\end{document}-time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1122–1129 (2017) Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Stochastic matching with few queries:(1-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 - \epsilon )$$\end{document} approximation. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1111–1124 (2020) Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014) GerasimovMKruglovVVolodinAOn negatively associated random variablesLobachevskii J. Math.20123314755291080610.1134/S19950802120100521255.60029 NeimanOSolomonSSimple deterministic algorithms for fully dynamic maximal matchingACM Trans Algorithms (TALG)201512111534628431293.05304 Wajc, D.: Rounding dynamic matchings against an adaptive adversary. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June, 2020, pp. 194–207. ACM (2020) Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995) Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 457–464 (2010) Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 21–30 (2015) Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805. IEEE (2008) Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex cover and fractional matching in o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1)$$\end{document} amortized update time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 86–98. Springer (2017) Gupta, M.: Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic update time. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014) AssadiSKhannaSLiYThe stochastic matching problem with (very) few queriesACM Trans. Econ. Comput. (TEAC)201973119403384910.1145/3355903 Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 118–126 (2007) Grandoni, F., Leonardi, S., Sankowski, P., Schwiegelshohn, C., Solomon, S.: (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-approximate incremental matching in constant deterministic amortized time. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1886–1898. SIAM (2019) Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C., Sudan, M.: Fully dynamic maximal independent set with polylogarithmic update time. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 382–405. IEEE (2019) Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 603–610 (2010) Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1131–1142. SIAM (2013) BhattacharyaSHenzingerMItalianoGFDeterministic fully dynamic data structures for vertex cover and matchingSIAM J. Comput.2018473859887381618910.1137/1409989251390.05221 Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 537–550 (2017) Bernstein, A., Brand, J.V.D., Gutenberg, M.P., Nanongkai, D., Saranurak, T., Sidford, A., Sun, H.: Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR. arXiv:2004.08432 (2020) Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching and minimum vertex cover in o(log3(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ^3 (n))$$\end{document} worst case update time. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 470–489. SIAM (2017) Behnezhad, S., Lacki, J., Mirrokni, V.: Fully dynamic matching: Beating 2-approximation in δϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\epsilon $$\end{document} update time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2492–2508. SIAM (2020) Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1616–1635. SIAM (2019) Bernstein, A.: Improved bounds for matching in random-order streams. In: 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 8–11 July, 2020, Saarbrücken, Germany (Virtual Conference), pp. 12:1–12:13 (2020) Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth 1151_CR46 1151_CR47 1151_CR49 1151_CR42 1151_CR44 1151_CR45 S Bhattacharya (1151_CR12) 2018; 47 J Holm (1151_CR29) 2001; 48 1151_CR40 1151_CR41 M Gerasimov (1151_CR48) 2012; 33 1151_CR13 1151_CR14 1151_CR15 1151_CR16 1151_CR10 1151_CR17 1151_CR18 1151_CR24 1151_CR25 1151_CR26 1151_CR27 1151_CR20 S Assadi (1151_CR43) 2019; 7 1151_CR21 1151_CR22 1151_CR23 1151_CR28 A Bernstein (1151_CR35) 2015 1151_CR4 1151_CR5 1151_CR2 1151_CR3 1151_CR8 1151_CR9 O Neiman (1151_CR11) 2015; 12 1151_CR6 1151_CR7 1151_CR36 1151_CR37 1151_CR38 1151_CR31 1151_CR1 1151_CR32 1151_CR33 1151_CR34 1151_CR39 S Baswana (1151_CR19) 2015; 44 1151_CR30 |
| References_xml | – reference: BhattacharyaSHenzingerMItalianoGFDeterministic fully dynamic data structures for vertex cover and matchingSIAM J. Comput.2018473859887381618910.1137/1409989251390.05221 – reference: Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching and minimum vertex cover in o(log3(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ^3 (n))$$\end{document} worst case update time. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 470–489. SIAM (2017) – reference: Kiss, P., Bhattacharya, S.: Deterministic rounding of dynamic fractional matchings. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow (2021) – reference: Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and the simultaneous communication model. In: Krauthgamer R. (ed.), Proceedings of the Twenty-Seventh Annual (ACM-SIAM) Symposium on Discrete Algorithms, SODA 2016, 10–12 Jan, Arlington, VA, USA, pp. 1345–1364. SIAM (2016) – reference: Bernstein, A., Forster, S., Henzinger, M.: A deamortization approach for dynamic spanner and dynamic maximal matching. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1899–1918. SIAM (2019) – reference: NeimanOSolomonSSimple deterministic algorithms for fully dynamic maximal matchingACM Trans Algorithms (TALG)201512111534628431293.05304 – reference: Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: breaking the polynomial barrier for worst-case time bounds. In: ICALP (2017) – reference: Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805. IEEE (2008) – reference: Behnezhad, S., Lacki, J., Mirrokni, V.: Fully dynamic matching: Beating 2-approximation in δϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\epsilon $$\end{document} update time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2492–2508. SIAM (2020) – reference: BaswanaSGuptaMSenSFully dynamic maximal matching in o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log (n))$$\end{document} update timeSIAM J. Comput.201544188113331356810.1137/1309141401314.05155 – reference: Solomon, N., Solomon, S.: A generalized matching reconfiguration problem. In: 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, 6–8 Jan, 2021, Virtual Conference, LIPIcs (2021) – reference: Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 457–464 (2010) – reference: Gupta, M., Peng, R.: Fully dynamic 1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + \epsilon $$\end{document}-approximate matchings. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 548–557. IEEE (2013) – reference: Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 537–550 (2017) – reference: Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS Rep. Ser. 3(25) (1996) – reference: Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014) – reference: GerasimovMKruglovVVolodinAOn negatively associated random variablesLobachevskii J. Math.20123314755291080610.1134/S19950802120100521255.60029 – reference: HolmJDe LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM (JACM)2001484723760214492810.1145/502090.5020951127.68408 – reference: Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002) – reference: Gupta, M.: Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic update time. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014) – reference: Amir, A., Pettie, S., Porat, E.: Higher lower bounds from the 3sum conjecture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1272–1287. SIAM (2016) – reference: Abboud, A., Addanki, R., Grandoni, F., Panigrahi, D., Saha, B.: Dynamic set cover: improved algorithms and lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 114–125 (2019) – reference: Bernstein, A.: Improved bounds for matching in random-order streams. In: 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 8–11 July, 2020, Saarbrücken, Germany (Virtual Conference), pp. 12:1–12:13 (2020) – reference: Bernstein, A., Brand, J.V.D., Gutenberg, M.P., Nanongkai, D., Saranurak, T., Sidford, A., Sun, H.: Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR. arXiv:2004.08432 (2020) – reference: Solomon, S.: Fully dynamic maximal matching in constant update time. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 325–334. IEEE (2016) – reference: Grandoni, F., Schwiegelshohn, C., Solomon, S., Uzrad, A.: Maintaining an edcs in general graphs: simpler, density-sensitive and with worst-case time bounds (2021). arXiv:2108.08825 – reference: Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016) – reference: Bernstein, A., Stein, C.: Faster fully dynamic matchings with small approximation ratios. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 692–711. SIAM (2016) – reference: Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 118–126 (2007) – reference: Grandoni, F., Leonardi, S., Sankowski, P., Schwiegelshohn, C., Solomon, S.: (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-approximate incremental matching in constant deterministic amortized time. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1886–1898. SIAM (2019) – reference: Bernstein, A., Dudeja, A., Langley, Z.: A framework for dynamic matching in weighted graphs. In: STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, 21–15 June, 2021, pp. 668–681. ACM (2021) – reference: Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C., Sudan, M.: Fully dynamic maximal independent set with polylogarithmic update time. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 382–405. IEEE (2019) – reference: Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 603–610 (2010) – reference: Nanongkai, D., Saranurak, T..: Dynamic spanning forest with worst-case update time: adaptive, las vegas, and o(n1/2-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(n^{1/2 - \epsilon })$$\end{document}-time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1122–1129 (2017) – reference: Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex cover and fractional matching in o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1)$$\end{document} amortized update time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 86–98. Springer (2017) – reference: Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Stochastic matching with few queries:(1-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 - \epsilon )$$\end{document} approximation. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1111–1124 (2020) – reference: AssadiSKhannaSLiYThe stochastic matching problem with (very) few queriesACM Trans. Econ. Comput. (TEAC)201973119403384910.1145/3355903 – reference: Bernstein, A., Gutenberg, M.P., Saranurak, T.: Deterministic decremental reachability, scc, and shortest paths via directed expanders and congestion balancing. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 1123–1134. IEEE (2020) – reference: Assadi, S., Behnezhad, S.: Towards a unified theory of sparsification for matching problems. In: 2nd Symposium on Simplicity in Algorithms, SOSA 2019, 8–9 Jan, 2019, San Diego, CA, USA (2019) – reference: Wajc, D.: Rounding dynamic matchings against an adaptive adversary. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June, 2020, pp. 194–207. ACM (2020) – reference: Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1616–1635. SIAM (2019) – reference: Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow, Scotland (Virtual Conference), pp. 19:1–19:13 (2021) – reference: Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 21–30 (2015) – reference: Roghani, M., Saberi, A., Wajc, D.: Beating the folklore algorithm for dynamic matching (2021). arXiv preprint arXiv:2106.10321 – reference: Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1131–1142. SIAM (2013) – reference: Arar, M., Chechik, S., Cohen, S., Stein, C., Wajc, D.: Dynamic matching: reducing integral algorithms to approximately-maximal fractional algorithms. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, 9–13 July, 2018, Prague, Czech Republic, pp. 7:1–7:16 (2018) – reference: Larsen, K.G.: The cell probe complexity of dynamic range counting. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 85–94 (2012) – reference: Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995) – reference: BernsteinASteinCFully dynamic matching in bipartite graphsInternational Colloquium on Automata, Languages, and Programming2015BerlinSpringer16717910.1007/978-3-662-47672-7_14 – ident: 1151_CR21 doi: 10.1145/225058.225269 – ident: 1151_CR8 – ident: 1151_CR36 doi: 10.1137/1.9781611977066.2 – ident: 1151_CR25 doi: 10.1145/1806689.1806772 – volume: 7 start-page: 1 issue: 3 year: 2019 ident: 1151_CR43 publication-title: ACM Trans. Econ. Comput. (TEAC) doi: 10.1145/3355903 – ident: 1151_CR24 doi: 10.1145/2213977.2213987 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 1151_CR11 publication-title: ACM Trans Algorithms (TALG) – ident: 1151_CR41 – volume: 48 start-page: 723 issue: 4 year: 2001 ident: 1151_CR29 publication-title: J. ACM (JACM) doi: 10.1145/502090.502095 – ident: 1151_CR37 doi: 10.1137/1.9781611975482.98 – ident: 1151_CR2 doi: 10.1109/FOCS.2019.00032 – ident: 1151_CR15 doi: 10.1109/FOCS.2016.43 – ident: 1151_CR18 doi: 10.1145/3357713.3384258 – ident: 1151_CR32 – volume: 44 start-page: 88 issue: 1 year: 2015 ident: 1151_CR19 publication-title: SIAM J. Comput. doi: 10.1137/130914140 – ident: 1151_CR38 – ident: 1151_CR14 doi: 10.1137/1.9781611974331.ch50 – ident: 1151_CR7 doi: 10.1109/FOCS.2014.53 – start-page: 167 volume-title: International Colloquium on Automata, Languages, and Programming year: 2015 ident: 1151_CR35 doi: 10.1007/978-3-662-47672-7_14 – ident: 1151_CR44 – ident: 1151_CR13 doi: 10.1137/1.9781611974782.30 – ident: 1151_CR45 doi: 10.7146/brics.v3i25.20006 – ident: 1151_CR23 – ident: 1151_CR3 doi: 10.1137/1.9781611975482.115 – ident: 1151_CR31 doi: 10.1109/FOCS.2013.65 – ident: 1151_CR16 – ident: 1151_CR33 – ident: 1151_CR1 doi: 10.1145/3313276.3316376 – ident: 1151_CR42 doi: 10.1145/3357713.3384340 – ident: 1151_CR9 doi: 10.1137/1.9781611975482.114 – ident: 1151_CR46 doi: 10.1145/509907.510003 – ident: 1151_CR10 – ident: 1151_CR40 doi: 10.1145/3406325.3451113 – ident: 1151_CR30 doi: 10.1137/1.9781611973105.81 – ident: 1151_CR20 doi: 10.1137/1.9781611975994.152 – ident: 1151_CR17 – ident: 1151_CR49 doi: 10.1137/1.9781611974331.ch93 – ident: 1151_CR5 doi: 10.1007/978-3-319-59250-3_8 – ident: 1151_CR6 doi: 10.1145/3055399.3055493 – volume: 47 start-page: 859 issue: 3 year: 2018 ident: 1151_CR12 publication-title: SIAM J. Comput. doi: 10.1137/140998925 – ident: 1151_CR27 doi: 10.1145/2897518.2897568 – ident: 1151_CR4 doi: 10.1109/FOCS46700.2020.00108 – ident: 1151_CR28 – ident: 1151_CR22 doi: 10.1145/2746539.2746609 – ident: 1151_CR47 doi: 10.1109/ALLERTON.2008.4797639 – ident: 1151_CR34 doi: 10.1145/3055399.3055447 – ident: 1151_CR26 doi: 10.1145/1806689.1806753 – volume: 33 start-page: 47 issue: 1 year: 2012 ident: 1151_CR48 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080212010052 – ident: 1151_CR39 |
| SSID | ssj0012796 |
| Score | 2.3729346 |
| Snippet | We present deterministic algorithms for maintaining a
(
3
/
2
+
ϵ
)
and
(
2
+
ϵ
)
-approximate maximum matching in a fully dynamic graph with worst-case update... We present deterministic algorithms for maintaining a $$(3/2 + \epsilon )$$ ( 3 / 2 + ϵ ) and $$(2 + \epsilon )$$ ( 2 + ϵ ) -approximate maximum matching in a... We present deterministic algorithms for maintaining a (3/2+ϵ) and (2+ϵ)-approximate maximum matching in a fully dynamic graph with worst-case update times... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3741 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Approximation Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Languages Maintenance Matching Mathematical analysis Mathematics of Computing Programming Theory of Computation |
| Title | Deterministic Dynamic Matching in Worst-Case Update Time |
| URI | https://link.springer.com/article/10.1007/s00453-023-01151-x https://www.proquest.com/docview/2888631284 |
| Volume | 85 |
| WOSCitedRecordID | wos001050371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED0hYGChfIpCQR7YwFKbOLU9opaKhQpBgW6W7ThSl7RqC-Lnc3acViAYYMniyEoud34vvjs_gMtEWt1hmaRa2pz6TipcB4WjPNHa5dxpk9ggNsGHQzEey4fYFLaoq93rlGRYqVfNbp59-Jyjr_9BnKLIHLcQ7oQPx8enl1XuIOFBlcvrzlOGAB1bZX6e4yscrTnmt7RoQJtB43_PuQe7kV2Sm8od9mHDlQfQqJUbSAzkQxD9WAUTjmkm_UqWntzjuux3pMikJK9T5IW0hyBHnmd-W4D4bpEjGA1uR707GjUUqE07bIlXkfvMajuXbfwqSWGRMhRFkZuMp845Jruu4IaJdqYzw5GAMInOxaXFUaHTY9gsp6U7AeLw7fIUwxkBjOncCNd1yK20sTpLC8OacFVbUs2qkzLU6kzkYBOFNlHBJuqjCa3a2CpGzUIl-DveTT1iNuG6Nu56-PfZTv92-xnseNX4qiqlBZvL-Zs7h237vpws5hfBmz4BhQjEmw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4xaqIX8WdEUXvwpk1g6-h6NCDBCMQoKrema7uEyyCAxj_f126DaPSgl126NNtb-75vfT8-gMtAaNVgkaBKaENdJRX6wdhSHihlDbcqCbQXm-CDQTwaiYeiKGxeZruXIUnvqZfFbo59uJijy_9BnKLIHDcYIpZL5Ht8elnGDgLuVbmc7jxlCNBFqczPc3yFoxXH_BYW9WjTqfzvOXdhp2CX5CZfDnuwZrN9qJTKDaTYyAcQt4ssGN-mmbRzWXrSR7_sTqTIOCOvE-SFtIUgR56n7liAuGqRQxh2boetLi00FKgOG2yB19i4yGrdiDp-lSDVSBnSNDVJxENrLRNNm_KExfVIRQlHAsIELi4uNI7GKjyC9WyS2WMgFt_OhLidEcCYMklsmxa5lUq0isI0YVW4Ki0pp3mnDLnsiextItEm0ttEflShVhpbFrtmLgP8HW-GDjGrcF0adzX8-2wnf7v9Ara6w35P9u4G96ew7RTk8wyVGqwvZm_2DDb1-2I8n537lfUJxvDHfw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGH5j1Bgv4mdEUXvwpg2wdXQ9GpBoVEIiKrema7uEyyCAxp_v224DNXowXnbp0mxvP56nfT8egPNAaNVkkaBKaENdJhXug7GlPFDKGm5VEmgvNsF7vXg4FP1PWfw-2r10SeY5Da5KUzavT0xaXyS-OSbi_I8uFggxiyKLXGNONMid1x-fF36EgHuFLqdBTxmCdZE283MfX6FpyTe_uUg98nQr___mbdgqWCe5yqfJDqzYbBcqpaIDKRb4HsSdIjrGl28mnVyunjzgfu1uqsgoIy9j5Iu0jeBHnibuuoC4LJJ9GHSvB-0bWmgrUB022RyfsXEe14YRDRytINVIJdI0NUnEQ2stEy2b8oTFjUhFCUdiwgROOi40tsYqPIDVbJzZQyAW_86EuMwR2JgySWxbFjmXSrSKwjRhVbgorSoneQUNuaiV7G0i0SbS20S-V6FWGl4Wq2kmAzymt0KHpFW4LA29bP69t6O_vX4GG_1OV97f9u6OYdMJy-eBKzVYnU9f7Qms67f5aDY99ZPsA49Z0GM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Dynamic+Matching+in+Worst-Case+Update+Time&rft.jtitle=Algorithmica&rft.au=Kiss%2C+Peter&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=12&rft.spage=3741&rft.epage=3765&rft_id=info:doi/10.1007%2Fs00453-023-01151-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |