Deterministic Dynamic Matching in Worst-Case Update Time

We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times O ^ ( n ) and O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 85; číslo 12; s. 3741 - 3765
Hlavní autor: Kiss, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2023
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times O ^ ( n ) and O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio ( 2 - δ ) (for any δ > 0 ) and ( 2 + ϵ ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times O ( n 3 / 4 ) and O ϵ ( n ) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are O ϵ ( n ) and O ~ ( 1 ) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving ( 3 / 2 + ϵ ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a ( α , δ ) -approximate matching sparsifier if at all times H satisfies that μ ( H ) · α + δ · n ≥ μ ( G ) (define ( α , δ ) -approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a ( 3 / 2 + ϵ , δ ) -approximate matching sparsifier. We further show how to reduce the maintenance of an α -approximate maximum matching to the maintenance of an ( α , δ ) -approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of O ^ ( 1 ) or O ~ ( 1 ) and is deterministic or randomized against an adaptive adversary respectively. To achieve ( 2 + ϵ ) -approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time.
AbstractList We present deterministic algorithms for maintaining a $$(3/2 + \epsilon )$$ ( 3 / 2 + ϵ ) and $$(2 + \epsilon )$$ ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times $${\hat{O}}(\sqrt{n})$$ O ^ ( n ) and $${\tilde{O}}(1)$$ O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio $$(2 - \delta )$$ ( 2 - δ ) (for any $$\delta > 0$$ δ > 0 ) and $$(2 + \epsilon )$$ ( 2 + ϵ ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times $$O(n^{3/4})$$ O ( n 3 / 4 ) and $$O_\epsilon (\sqrt{n})$$ O ϵ ( n ) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are $$O_\epsilon (\sqrt{n})$$ O ϵ ( n ) and $${\tilde{O}}(1)$$ O ~ ( 1 ) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving $$(3/2 + \epsilon )$$ ( 3 / 2 + ϵ ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a $$(\alpha , \delta )$$ ( α , δ ) -approximate matching sparsifier if at all times H satisfies that $$\mu (H) \cdot \alpha + \delta \cdot n \ge \mu (G)$$ μ ( H ) · α + δ · n ≥ μ ( G ) (define $$(\alpha , \delta )$$ ( α , δ ) -approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a $$(3/2 + \epsilon , \delta )$$ ( 3 / 2 + ϵ , δ ) -approximate matching sparsifier. We further show how to reduce the maintenance of an $$\alpha $$ α -approximate maximum matching to the maintenance of an $$(\alpha , \delta )$$ ( α , δ ) -approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of $${\hat{O}}(1)$$ O ^ ( 1 ) or $${\tilde{O}}(1)$$ O ~ ( 1 ) and is deterministic or randomized against an adaptive adversary respectively. To achieve $$(2 + \epsilon )$$ ( 2 + ϵ ) -approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time.
We present deterministic algorithms for maintaining a (3/2+ϵ) and (2+ϵ)-approximate maximum matching in a fully dynamic graph with worst-case update times O^(n) and O~(1) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio (2-δ) (for any δ>0) and (2+ϵ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times O(n3/4) and Oϵ(n) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are Oϵ(n) and O~(1) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving (3/2+ϵ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a (α,δ)-approximate matching sparsifier if at all times H satisfies that μ(H)·α+δ·n≥μ(G) (define (α,δ)-approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a (3/2+ϵ,δ)-approximate matching sparsifier. We further show how to reduce the maintenance of an α-approximate maximum matching to the maintenance of an (α,δ)-approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of O^(1) or O~(1) and is deterministic or randomized against an adaptive adversary respectively. To achieve (2+ϵ)-approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time.
We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update times O ^ ( n ) and O ~ ( 1 ) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio ( 2 - δ ) (for any δ > 0 ) and ( 2 + ϵ ) were both shown by Roghani et al. (Beating the folklore algorithm for dynamic matching, 2021) with update times O ( n 3 / 4 ) and O ϵ ( n ) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are O ϵ ( n ) and O ~ ( 1 ) which were shown in Bernstein and Stein (in: Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm achieving ( 3 / 2 + ϵ ) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein (in: International colloquium on automata, languages, and programming, Springer, Berlin, 2015). Say that H is a ( α , δ ) -approximate matching sparsifier if at all times H satisfies that μ ( H ) · α + δ · n ≥ μ ( G ) (define ( α , δ ) -approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a ( 3 / 2 + ϵ , δ ) -approximate matching sparsifier. We further show how to reduce the maintenance of an α -approximate maximum matching to the maintenance of an ( α , δ ) -approximate maximum matching building based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington, VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of O ^ ( 1 ) or O ~ ( 1 ) and is deterministic or randomized against an adaptive adversary respectively. To achieve ( 2 + ϵ ) -approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss (in: 48th International colloquium on automata, languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an adaptive adversary, 2020) which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time.
Author Kiss, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Kiss
  fullname: Kiss, Peter
  email: peter.kiss@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick
BookMark eNp9kEtPwzAQhC1UJNrCH-AUibNh_YjtHFHLSyriEsTRcpNNSUWcYqdS--8xBIkbh9057Mys9M3IxPceCblkcM0A9E0EkLmgwNMwljN6OCFTJgWnkEs2IVNg2lCpmD4jsxi3AIzrQk2JWeKAoWt9G4e2ypZH77qkz26o3lu_yVqfvfUhDnThImavu9oNmJVth-fktHEfES9-dU7K-7ty8UhXLw9Pi9sVrQSTQ9qm5oWSUBdQOcabSkvRNE29zrVARFkobPRaGshdvtaglCzQ1bqo0tU4MSdXY-0u9J97jIPd9vvg00fLjTFKMG5kcvHRVYU-xoCN3YW2c-FoGdhvQHYEZBMg-wPIHlJIjKGYzH6D4a_6n9QXMaxqOw
Cites_doi 10.1145/225058.225269
10.1137/1.9781611977066.2
10.1145/1806689.1806772
10.1145/3355903
10.1145/2213977.2213987
10.1145/502090.502095
10.1137/1.9781611975482.98
10.1109/FOCS.2019.00032
10.1109/FOCS.2016.43
10.1145/3357713.3384258
10.1137/130914140
10.1137/1.9781611974331.ch50
10.1109/FOCS.2014.53
10.1007/978-3-662-47672-7_14
10.1137/1.9781611974782.30
10.7146/brics.v3i25.20006
10.1137/1.9781611975482.115
10.1109/FOCS.2013.65
10.1145/3313276.3316376
10.1145/3357713.3384340
10.1137/1.9781611975482.114
10.1145/509907.510003
10.1145/3406325.3451113
10.1137/1.9781611973105.81
10.1137/1.9781611975994.152
10.1137/1.9781611974331.ch93
10.1007/978-3-319-59250-3_8
10.1145/3055399.3055493
10.1137/140998925
10.1145/2897518.2897568
10.1109/FOCS46700.2020.00108
10.1145/2746539.2746609
10.1109/ALLERTON.2008.4797639
10.1145/3055399.3055447
10.1145/1806689.1806753
10.1134/S1995080212010052
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-023-01151-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3765
ExternalDocumentID 10_1007_s00453_023_01151_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c314t-c38d29640d90ca12fc743fffdb573eee496ef7b4805a5b706649ead79c3ee8a3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:12:43 EST 2025
Sat Nov 29 02:20:33 EST 2025
Fri Feb 21 02:41:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Matching
Dynamic algorithms
Approximate matching
EDCS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c38d29640d90ca12fc743fffdb573eee496ef7b4805a5b706649ead79c3ee8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00453-023-01151-x
PQID 2888631284
PQPubID 2043795
PageCount 25
ParticipantIDs proquest_journals_2888631284
crossref_primary_10_1007_s00453_023_01151_x
springer_journals_10_1007_s00453_023_01151_x
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Amir, A., Pettie, S., Porat, E.: Higher lower bounds from the 3sum conjecture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1272–1287. SIAM (2016)
Solomon, N., Solomon, S.: A generalized matching reconfiguration problem. In: 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, 6–8 Jan, 2021, Virtual Conference, LIPIcs (2021)
Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and the simultaneous communication model. In: Krauthgamer R. (ed.), Proceedings of the Twenty-Seventh Annual (ACM-SIAM) Symposium on Discrete Algorithms, SODA 2016, 10–12 Jan, Arlington, VA, USA, pp. 1345–1364. SIAM (2016)
Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002)
Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS Rep. Ser. 3(25) (1996)
Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: breaking the polynomial barrier for worst-case time bounds. In: ICALP (2017)
Abboud, A., Addanki, R., Grandoni, F., Panigrahi, D., Saha, B.: Dynamic set cover: improved algorithms and lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 114–125 (2019)
HolmJDe LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM (JACM)2001484723760214492810.1145/502090.5020951127.68408
BaswanaSGuptaMSenSFully dynamic maximal matching in o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log (n))$$\end{document} update timeSIAM J. Comput.201544188113331356810.1137/1309141401314.05155
Grandoni, F., Schwiegelshohn, C., Solomon, S., Uzrad, A.: Maintaining an edcs in general graphs: simpler, density-sensitive and with worst-case time bounds (2021). arXiv:2108.08825
BernsteinASteinCFully dynamic matching in bipartite graphsInternational Colloquium on Automata, Languages, and Programming2015BerlinSpringer16717910.1007/978-3-662-47672-7_14
Assadi, S., Behnezhad, S.: Towards a unified theory of sparsification for matching problems. In: 2nd Symposium on Simplicity in Algorithms, SOSA 2019, 8–9 Jan, 2019, San Diego, CA, USA (2019)
Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow, Scotland (Virtual Conference), pp. 19:1–19:13 (2021)
Kiss, P., Bhattacharya, S.: Deterministic rounding of dynamic fractional matchings. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow (2021)
Nanongkai, D., Saranurak, T..: Dynamic spanning forest with worst-case update time: adaptive, las vegas, and o(n1/2-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(n^{1/2 - \epsilon })$$\end{document}-time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1122–1129 (2017)
Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Stochastic matching with few queries:(1-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 - \epsilon )$$\end{document} approximation. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1111–1124 (2020)
Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014)
GerasimovMKruglovVVolodinAOn negatively associated random variablesLobachevskii J. Math.20123314755291080610.1134/S19950802120100521255.60029
NeimanOSolomonSSimple deterministic algorithms for fully dynamic maximal matchingACM Trans Algorithms (TALG)201512111534628431293.05304
Wajc, D.: Rounding dynamic matchings against an adaptive adversary. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June, 2020, pp. 194–207. ACM (2020)
Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995)
Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 457–464 (2010)
Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 21–30 (2015)
Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805. IEEE (2008)
Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex cover and fractional matching in o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1)$$\end{document} amortized update time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 86–98. Springer (2017)
Gupta, M.: Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic update time. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)
AssadiSKhannaSLiYThe stochastic matching problem with (very) few queriesACM Trans. Econ. Comput. (TEAC)201973119403384910.1145/3355903
Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 118–126 (2007)
Grandoni, F., Leonardi, S., Sankowski, P., Schwiegelshohn, C., Solomon, S.: (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-approximate incremental matching in constant deterministic amortized time. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1886–1898. SIAM (2019)
Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C., Sudan, M.: Fully dynamic maximal independent set with polylogarithmic update time. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 382–405. IEEE (2019)
Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 603–610 (2010)
Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1131–1142. SIAM (2013)
BhattacharyaSHenzingerMItalianoGFDeterministic fully dynamic data structures for vertex cover and matchingSIAM J. Comput.2018473859887381618910.1137/1409989251390.05221
Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 537–550 (2017)
Bernstein, A., Brand, J.V.D., Gutenberg, M.P., Nanongkai, D., Saranurak, T., Sidford, A., Sun, H.: Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR. arXiv:2004.08432 (2020)
Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching and minimum vertex cover in o(log3(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ^3 (n))$$\end{document} worst case update time. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 470–489. SIAM (2017)
Behnezhad, S., Lacki, J., Mirrokni, V.: Fully dynamic matching: Beating 2-approximation in δϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\epsilon $$\end{document} update time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2492–2508. SIAM (2020)
Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1616–1635. SIAM (2019)
Bernstein, A.: Improved bounds for matching in random-order streams. In: 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 8–11 July, 2020, Saarbrücken, Germany (Virtual Conference), pp. 12:1–12:13 (2020)
Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth
1151_CR46
1151_CR47
1151_CR49
1151_CR42
1151_CR44
1151_CR45
S Bhattacharya (1151_CR12) 2018; 47
J Holm (1151_CR29) 2001; 48
1151_CR40
1151_CR41
M Gerasimov (1151_CR48) 2012; 33
1151_CR13
1151_CR14
1151_CR15
1151_CR16
1151_CR10
1151_CR17
1151_CR18
1151_CR24
1151_CR25
1151_CR26
1151_CR27
1151_CR20
S Assadi (1151_CR43) 2019; 7
1151_CR21
1151_CR22
1151_CR23
1151_CR28
A Bernstein (1151_CR35) 2015
1151_CR4
1151_CR5
1151_CR2
1151_CR3
1151_CR8
1151_CR9
O Neiman (1151_CR11) 2015; 12
1151_CR6
1151_CR7
1151_CR36
1151_CR37
1151_CR38
1151_CR31
1151_CR1
1151_CR32
1151_CR33
1151_CR34
1151_CR39
S Baswana (1151_CR19) 2015; 44
1151_CR30
References_xml – reference: BhattacharyaSHenzingerMItalianoGFDeterministic fully dynamic data structures for vertex cover and matchingSIAM J. Comput.2018473859887381618910.1137/1409989251390.05221
– reference: Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching and minimum vertex cover in o(log3(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ^3 (n))$$\end{document} worst case update time. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 470–489. SIAM (2017)
– reference: Kiss, P., Bhattacharya, S.: Deterministic rounding of dynamic fractional matchings. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow (2021)
– reference: Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and the simultaneous communication model. In: Krauthgamer R. (ed.), Proceedings of the Twenty-Seventh Annual (ACM-SIAM) Symposium on Discrete Algorithms, SODA 2016, 10–12 Jan, Arlington, VA, USA, pp. 1345–1364. SIAM (2016)
– reference: Bernstein, A., Forster, S., Henzinger, M.: A deamortization approach for dynamic spanner and dynamic maximal matching. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1899–1918. SIAM (2019)
– reference: NeimanOSolomonSSimple deterministic algorithms for fully dynamic maximal matchingACM Trans Algorithms (TALG)201512111534628431293.05304
– reference: Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: breaking the polynomial barrier for worst-case time bounds. In: ICALP (2017)
– reference: Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805. IEEE (2008)
– reference: Behnezhad, S., Lacki, J., Mirrokni, V.: Fully dynamic matching: Beating 2-approximation in δϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\epsilon $$\end{document} update time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2492–2508. SIAM (2020)
– reference: BaswanaSGuptaMSenSFully dynamic maximal matching in o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log (n))$$\end{document} update timeSIAM J. Comput.201544188113331356810.1137/1309141401314.05155
– reference: Solomon, N., Solomon, S.: A generalized matching reconfiguration problem. In: 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, 6–8 Jan, 2021, Virtual Conference, LIPIcs (2021)
– reference: Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 457–464 (2010)
– reference: Gupta, M., Peng, R.: Fully dynamic 1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + \epsilon $$\end{document}-approximate matchings. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 548–557. IEEE (2013)
– reference: Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 537–550 (2017)
– reference: Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS Rep. Ser. 3(25) (1996)
– reference: Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014)
– reference: GerasimovMKruglovVVolodinAOn negatively associated random variablesLobachevskii J. Math.20123314755291080610.1134/S19950802120100521255.60029
– reference: HolmJDe LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM (JACM)2001484723760214492810.1145/502090.5020951127.68408
– reference: Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002)
– reference: Gupta, M.: Maintaining approximate maximum matching in an incremental bipartite graph in polylogarithmic update time. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)
– reference: Amir, A., Pettie, S., Porat, E.: Higher lower bounds from the 3sum conjecture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1272–1287. SIAM (2016)
– reference: Abboud, A., Addanki, R., Grandoni, F., Panigrahi, D., Saha, B.: Dynamic set cover: improved algorithms and lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 114–125 (2019)
– reference: Bernstein, A.: Improved bounds for matching in random-order streams. In: 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, 8–11 July, 2020, Saarbrücken, Germany (Virtual Conference), pp. 12:1–12:13 (2020)
– reference: Bernstein, A., Brand, J.V.D., Gutenberg, M.P., Nanongkai, D., Saranurak, T., Sidford, A., Sun, H.: Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR. arXiv:2004.08432 (2020)
– reference: Solomon, S.: Fully dynamic maximal matching in constant update time. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 325–334. IEEE (2016)
– reference: Grandoni, F., Schwiegelshohn, C., Solomon, S., Uzrad, A.: Maintaining an edcs in general graphs: simpler, density-sensitive and with worst-case time bounds (2021). arXiv:2108.08825
– reference: Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016)
– reference: Bernstein, A., Stein, C.: Faster fully dynamic matchings with small approximation ratios. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 692–711. SIAM (2016)
– reference: Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 118–126 (2007)
– reference: Grandoni, F., Leonardi, S., Sankowski, P., Schwiegelshohn, C., Solomon, S.: (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-approximate incremental matching in constant deterministic amortized time. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1886–1898. SIAM (2019)
– reference: Bernstein, A., Dudeja, A., Langley, Z.: A framework for dynamic matching in weighted graphs. In: STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, 21–15 June, 2021, pp. 668–681. ACM (2021)
– reference: Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C., Sudan, M.: Fully dynamic maximal independent set with polylogarithmic update time. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 382–405. IEEE (2019)
– reference: Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 603–610 (2010)
– reference: Nanongkai, D., Saranurak, T..: Dynamic spanning forest with worst-case update time: adaptive, las vegas, and o(n1/2-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(n^{1/2 - \epsilon })$$\end{document}-time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1122–1129 (2017)
– reference: Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex cover and fractional matching in o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(1)$$\end{document} amortized update time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 86–98. Springer (2017)
– reference: Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Stochastic matching with few queries:(1-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1 - \epsilon )$$\end{document} approximation. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1111–1124 (2020)
– reference: AssadiSKhannaSLiYThe stochastic matching problem with (very) few queriesACM Trans. Econ. Comput. (TEAC)201973119403384910.1145/3355903
– reference: Bernstein, A., Gutenberg, M.P., Saranurak, T.: Deterministic decremental reachability, scc, and shortest paths via directed expanders and congestion balancing. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 1123–1134. IEEE (2020)
– reference: Assadi, S., Behnezhad, S.: Towards a unified theory of sparsification for matching problems. In: 2nd Symposium on Simplicity in Algorithms, SOSA 2019, 8–9 Jan, 2019, San Diego, CA, USA (2019)
– reference: Wajc, D.: Rounding dynamic matchings against an adaptive adversary. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June, 2020, pp. 194–207. ACM (2020)
– reference: Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1616–1635. SIAM (2019)
– reference: Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021, Glasgow, Scotland (Virtual Conference), pp. 19:1–19:13 (2021)
– reference: Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 21–30 (2015)
– reference: Roghani, M., Saberi, A., Wajc, D.: Beating the folklore algorithm for dynamic matching (2021). arXiv preprint arXiv:2106.10321
– reference: Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1131–1142. SIAM (2013)
– reference: Arar, M., Chechik, S., Cohen, S., Stein, C., Wajc, D.: Dynamic matching: reducing integral algorithms to approximately-maximal fractional algorithms. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, 9–13 July, 2018, Prague, Czech Republic, pp. 7:1–7:16 (2018)
– reference: Larsen, K.G.: The cell probe complexity of dynamic range counting. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 85–94 (2012)
– reference: Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995)
– reference: BernsteinASteinCFully dynamic matching in bipartite graphsInternational Colloquium on Automata, Languages, and Programming2015BerlinSpringer16717910.1007/978-3-662-47672-7_14
– ident: 1151_CR21
  doi: 10.1145/225058.225269
– ident: 1151_CR8
– ident: 1151_CR36
  doi: 10.1137/1.9781611977066.2
– ident: 1151_CR25
  doi: 10.1145/1806689.1806772
– volume: 7
  start-page: 1
  issue: 3
  year: 2019
  ident: 1151_CR43
  publication-title: ACM Trans. Econ. Comput. (TEAC)
  doi: 10.1145/3355903
– ident: 1151_CR24
  doi: 10.1145/2213977.2213987
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 1151_CR11
  publication-title: ACM Trans Algorithms (TALG)
– ident: 1151_CR41
– volume: 48
  start-page: 723
  issue: 4
  year: 2001
  ident: 1151_CR29
  publication-title: J. ACM (JACM)
  doi: 10.1145/502090.502095
– ident: 1151_CR37
  doi: 10.1137/1.9781611975482.98
– ident: 1151_CR2
  doi: 10.1109/FOCS.2019.00032
– ident: 1151_CR15
  doi: 10.1109/FOCS.2016.43
– ident: 1151_CR18
  doi: 10.1145/3357713.3384258
– ident: 1151_CR32
– volume: 44
  start-page: 88
  issue: 1
  year: 2015
  ident: 1151_CR19
  publication-title: SIAM J. Comput.
  doi: 10.1137/130914140
– ident: 1151_CR38
– ident: 1151_CR14
  doi: 10.1137/1.9781611974331.ch50
– ident: 1151_CR7
  doi: 10.1109/FOCS.2014.53
– start-page: 167
  volume-title: International Colloquium on Automata, Languages, and Programming
  year: 2015
  ident: 1151_CR35
  doi: 10.1007/978-3-662-47672-7_14
– ident: 1151_CR44
– ident: 1151_CR13
  doi: 10.1137/1.9781611974782.30
– ident: 1151_CR45
  doi: 10.7146/brics.v3i25.20006
– ident: 1151_CR23
– ident: 1151_CR3
  doi: 10.1137/1.9781611975482.115
– ident: 1151_CR31
  doi: 10.1109/FOCS.2013.65
– ident: 1151_CR16
– ident: 1151_CR33
– ident: 1151_CR1
  doi: 10.1145/3313276.3316376
– ident: 1151_CR42
  doi: 10.1145/3357713.3384340
– ident: 1151_CR9
  doi: 10.1137/1.9781611975482.114
– ident: 1151_CR46
  doi: 10.1145/509907.510003
– ident: 1151_CR10
– ident: 1151_CR40
  doi: 10.1145/3406325.3451113
– ident: 1151_CR30
  doi: 10.1137/1.9781611973105.81
– ident: 1151_CR20
  doi: 10.1137/1.9781611975994.152
– ident: 1151_CR17
– ident: 1151_CR49
  doi: 10.1137/1.9781611974331.ch93
– ident: 1151_CR5
  doi: 10.1007/978-3-319-59250-3_8
– ident: 1151_CR6
  doi: 10.1145/3055399.3055493
– volume: 47
  start-page: 859
  issue: 3
  year: 2018
  ident: 1151_CR12
  publication-title: SIAM J. Comput.
  doi: 10.1137/140998925
– ident: 1151_CR27
  doi: 10.1145/2897518.2897568
– ident: 1151_CR4
  doi: 10.1109/FOCS46700.2020.00108
– ident: 1151_CR28
– ident: 1151_CR22
  doi: 10.1145/2746539.2746609
– ident: 1151_CR47
  doi: 10.1109/ALLERTON.2008.4797639
– ident: 1151_CR34
  doi: 10.1145/3055399.3055447
– ident: 1151_CR26
  doi: 10.1145/1806689.1806753
– volume: 33
  start-page: 47
  issue: 1
  year: 2012
  ident: 1151_CR48
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080212010052
– ident: 1151_CR39
SSID ssj0012796
Score 2.3729346
Snippet We present deterministic algorithms for maintaining a ( 3 / 2 + ϵ ) and ( 2 + ϵ ) -approximate maximum matching in a fully dynamic graph with worst-case update...
We present deterministic algorithms for maintaining a $$(3/2 + \epsilon )$$ ( 3 / 2 + ϵ ) and $$(2 + \epsilon )$$ ( 2 + ϵ ) -approximate maximum matching in a...
We present deterministic algorithms for maintaining a (3/2+ϵ) and (2+ϵ)-approximate maximum matching in a fully dynamic graph with worst-case update times...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3741
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Languages
Maintenance
Matching
Mathematical analysis
Mathematics of Computing
Programming
Theory of Computation
Title Deterministic Dynamic Matching in Worst-Case Update Time
URI https://link.springer.com/article/10.1007/s00453-023-01151-x
https://www.proquest.com/docview/2888631284
Volume 85
WOSCitedRecordID wos001050371800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED0hYGChfIpCQR7YwFKaOLE9opaKhQpBgW6RHTtSl7RqC-Lnc3acViAYYMniyIpOd34vvo8HcJlKnZamsJRnJqPMaEMV0liK3FW6gWU6NsqLTfDhUIzH8iE0hS2aavcmJelP6lWzm2MfLufo6n8Qpygyxy2EO-HC8fHpZZU7iLlX5XK685QhQIdWmZ_3-ApHa475LS3q0WbQ-t937sFuYJfkpnaHfdiw1QG0GuUGEgL5EEQ_VMH4Mc2kX8vSk3s8l92NFJlU5HWKvJD2EOTI88xdCxDXLXIEo8HtqHdHg4YCLZIuW-JTGJdZjYyMCtWNywIpQ1mWRqc8sdYymdmSayaiVKWaIwFhEp2LywJXhUqOYbOaVvYEiMyMUolizCLHinUkdKLirnXz1iLDhGzDVWPJfFZPyshXM5G9TXK0Se5tkn-0odMYOw9Rs8hj_B3PEoeYbbhujLte_n2307-9fgY7TjW-rkrpwOZy_mbPYbt4X04W8wvvTZ_OKMPi
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH4RFfTi_MTp1By8aaBr048cZXNM3Ibo1N1C0qSwSze2Kf5836TthqIHvfSSEspDkudp3o8H4DLkKsx0amgc6YgyrTSVKGMpalduG5YpX0tnNhEPBsloxB_KorB5le1ehSTdSb0sdrPqw8Ycbf4P8hRF5bjBkLFsIt_j08syduDHzpXL-s5ThgRdlsr8PMdXOlppzG9hUcc2ndr_vnMXdkp1SW6K5bAHaybfh1rl3EDKjXwASbvMgnFtmkm7sKUnfTyX7Y0UGefkdYK6kLaQ5Mjz1F4LEFstcgjDzu2w1aWlhwJNgyZb4DPRNrLqae6lsulnKUqGLMu0CuPAGMN4ZLJYscQLZahiFCCM4-KKeYqjiQyOYD2f5OYYCI-0lIFkzKDG8pWXqED6TWP7rXmaJbwOVxWSYlp0yhDLnsgOE4GYCIeJ-KhDowJblLtmLnz8HY8Cy5h1uK7AXQ3_PtvJ316_gK3usN8TvbvB_SlsWwf5IkOlAeuL2Zs5g830fTGez87dyvoEB3PGxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH6Iinhx_sTp1By8aVjXpj9ylM2hqGPg1N1C0qSwSze2Kf75vqTtpqIH8dJLSigfSd-XvPe-D-A85CrMdGpoHOmIMq00lUhjKXJXbgXLlK-lM5uIe71kOOT9T138rtq9SkkWPQ1WpSmfNyc6ay4a3ywTsflHWwuEMYsii1xj1jTIntcfnxd5BD92Dl3Wg54yDNZl28zPc3wNTUu--S1F6iJPt_b_b96GrZJ1kqtimezAisl3oVY5OpByg-9B0imrY5x8M-kUdvXkAf_X9qaKjHLyMka-SNsY_MjTxF4XENtFsg-D7vWgfUNLbwWaBi02x2eibcbV09xLZcvPUqQSWZZpFcaBMYbxyGSxYokXylDFSEwYx0UX8xRHExkcwGo-zs0hEB5pKQPJmEHu5SsvUYH0W8bqsHmaJbwOFxWqYlIoaIiFVrLDRCAmwmEi3uvQqIAX5W6aCR-P6VFgI2kdLiugl8O_z3b0t9fPYKPf6Yr7297dMWxaY_micKUBq_PpqzmB9fRtPppNT90i-wDN_s-q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Dynamic+Matching+in+Worst-Case+Update+Time&rft.jtitle=Algorithmica&rft.au=Kiss%2C+Peter&rft.date=2023-12-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=12&rft.spage=3741&rft.epage=3765&rft_id=info:doi/10.1007%2Fs00453-023-01151-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_023_01151_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon