Improving the ϵ-approximate algorithm for Probabilistic Classifier Chains

Probabilistic Classifier Chains are a multi-label classification method which has gained the attention of researchers in recent years. This is because of their ability to optimally estimate the entire joint conditional probability of a label combination through the product rule of probability. Their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems Jg. 62; H. 7; S. 2709 - 2738
Hauptverfasser: Fdez-Díaz, Miriam, Fdez-Díaz, Laura, Mena, Deiner, Montañés, Elena, Quevedo, José Ramón, Coz, Juan José del
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.07.2020
Springer Nature B.V
Schlagworte:
ISSN:0219-1377, 0219-3116
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Probabilistic Classifier Chains are a multi-label classification method which has gained the attention of researchers in recent years. This is because of their ability to optimally estimate the entire joint conditional probability of a label combination through the product rule of probability. Their main drawback is that they require performing an exhaustive search in order to obtain Bayes optimal predictions. This means computing this probability for all possible label combinations before taking a label combination with the highest value of probability. This is the reason why several works have been published in recent years that avoid exploring all combinations, while maintaining optimality. Approaches such as greedy search, beam search and Monte Carlo reduce the computational cost, but at the cost of not ensuring Bayes optimal predictions (although, in general, they provide close to optimal solutions). Methods based on a heuristic search provide optimal predictions, but the computational time has not been as good as expected. In this respect, the ϵ -approximate algorithm has been found to be the best inference approach among those that provide Bayes optimal predictions, not only for its optimality, but also for its computational time. However, this paper both theoretically and experimentally shows that it sometimes performs some backtracking during the search for optimal predictions which may prolong the prediction time. The aim of this paper is thus to improve this algorithm by achieving a more direct search. Specifically, it enhances the criterion under which the next node to be expanded is chosen by adding heuristic information, although it is only applicable for linear-based models. The experiments carried out confirm that the improved ϵ -approximate algorithm explores fewer nodes and reduces the computational time of the original version.
AbstractList Probabilistic Classifier Chains are a multi-label classification method which has gained the attention of researchers in recent years. This is because of their ability to optimally estimate the entire joint conditional probability of a label combination through the product rule of probability. Their main drawback is that they require performing an exhaustive search in order to obtain Bayes optimal predictions. This means computing this probability for all possible label combinations before taking a label combination with the highest value of probability. This is the reason why several works have been published in recent years that avoid exploring all combinations, while maintaining optimality. Approaches such as greedy search, beam search and Monte Carlo reduce the computational cost, but at the cost of not ensuring Bayes optimal predictions (although, in general, they provide close to optimal solutions). Methods based on a heuristic search provide optimal predictions, but the computational time has not been as good as expected. In this respect, the ϵ -approximate algorithm has been found to be the best inference approach among those that provide Bayes optimal predictions, not only for its optimality, but also for its computational time. However, this paper both theoretically and experimentally shows that it sometimes performs some backtracking during the search for optimal predictions which may prolong the prediction time. The aim of this paper is thus to improve this algorithm by achieving a more direct search. Specifically, it enhances the criterion under which the next node to be expanded is chosen by adding heuristic information, although it is only applicable for linear-based models. The experiments carried out confirm that the improved ϵ -approximate algorithm explores fewer nodes and reduces the computational time of the original version.
Probabilistic Classifier Chains are a multi-label classification method which has gained the attention of researchers in recent years. This is because of their ability to optimally estimate the entire joint conditional probability of a label combination through the product rule of probability. Their main drawback is that they require performing an exhaustive search in order to obtain Bayes optimal predictions. This means computing this probability for all possible label combinations before taking a label combination with the highest value of probability. This is the reason why several works have been published in recent years that avoid exploring all combinations, while maintaining optimality. Approaches such as greedy search, beam search and Monte Carlo reduce the computational cost, but at the cost of not ensuring Bayes optimal predictions (although, in general, they provide close to optimal solutions). Methods based on a heuristic search provide optimal predictions, but the computational time has not been as good as expected. In this respect, the ϵ-approximate algorithm has been found to be the best inference approach among those that provide Bayes optimal predictions, not only for its optimality, but also for its computational time. However, this paper both theoretically and experimentally shows that it sometimes performs some backtracking during the search for optimal predictions which may prolong the prediction time. The aim of this paper is thus to improve this algorithm by achieving a more direct search. Specifically, it enhances the criterion under which the next node to be expanded is chosen by adding heuristic information, although it is only applicable for linear-based models. The experiments carried out confirm that the improved ϵ-approximate algorithm explores fewer nodes and reduces the computational time of the original version.
Author Mena, Deiner
Coz, Juan José del
Quevedo, José Ramón
Fdez-Díaz, Laura
Montañés, Elena
Fdez-Díaz, Miriam
Author_xml – sequence: 1
  givenname: Miriam
  surname: Fdez-Díaz
  fullname: Fdez-Díaz, Miriam
  organization: Artificial Intelligence Center, University of Oviedo at Gijón
– sequence: 2
  givenname: Laura
  surname: Fdez-Díaz
  fullname: Fdez-Díaz, Laura
  organization: Artificial Intelligence Center, University of Oviedo at Gijón
– sequence: 3
  givenname: Deiner
  surname: Mena
  fullname: Mena, Deiner
  organization: Dept. de Ingeniería en Telecomunicaciones e Informática, Universidad Tecnológica del Chocó
– sequence: 4
  givenname: Elena
  surname: Montañés
  fullname: Montañés, Elena
  email: montaneselena@uniovi.es
  organization: Artificial Intelligence Center, University of Oviedo at Gijón
– sequence: 5
  givenname: José Ramón
  surname: Quevedo
  fullname: Quevedo, José Ramón
  organization: Artificial Intelligence Center, University of Oviedo at Gijón
– sequence: 6
  givenname: Juan José del
  surname: Coz
  fullname: Coz, Juan José del
  organization: Artificial Intelligence Center, University of Oviedo at Gijón
BookMark eNp9kE1OwzAQhS1UJNrCBVhFYm2YsR0nWaKIn6JKsIC15cRO6ypNip0iOBjn4EoYUokdqxmNvjfz5s3IpOs7S8g5wiUCZFcBATGlwIACCi5pekSmwLCgHFFODj3yLDshsxA2AJhJxCl5WGx3vn9z3SoZ1jb5-qR6FwfvbqsHm-h21Xs3rLdJ0_vkyfeVrlzrwuDqpGx1CK5x1iflWrsunJLjRrfBnh3qnLzc3jyX93T5eLcor5e05igGWoPIdWYkLyRUopF5UWfRJM-aHK2oDGqTM91EwhgOTENVIRppjUmjRNR8Ti7GvdHn696GQW36ve_iScUEpqksCoaRYiNV-z4Ebxu18_Ep_6EQ1E9masxMxczUb2YqjSI-ikKEu5X1f6v_UX0Dz_9xdw
Cites_doi 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1145/2716262
10.1023/A:1007649029923
10.1016/j.patcog.2013.09.029
10.1016/j.patcog.2015.01.004
10.1007/s10994-012-5285-8
10.1002/widm.1185
10.1016/j.knosys.2017.03.015
10.1007/s10994-016-5600-x
10.1016/j.patcog.2006.12.019
10.1016/j.patcog.2013.10.006
10.1007/s10994-016-5593-5
10.1007/s10994-008-5064-8
10.1109/TKDE.2006.162
10.1007/s10994-009-5127-5
10.1007/s10994-011-5256-5
10.1007/s10994-013-5371-6
10.1007/3-540-44794-6_4
10.21236/ADA440081
10.1007/978-3-642-04174-7_17
10.1109/ICDM.2008.74
10.1007/978-3-642-23783-6_31
10.1109/ICTAI.2013.76
10.1109/FUZZ-IEEE.2015.7337815
10.1007/978-3-540-24775-3_5
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10115-020-01436-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 2738
ExternalDocumentID 10_1007_s10115_020_01436_5
GrantInformation_xml – fundername: MINECO (the Spanish Ministerio de Economía y Competitividad) and FEDER (Fondo Europeo de Desarrollo Regional)
  grantid: TIN2015-65069-C2-2-R
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c314t-c048a7d63960b4f689c731137f81e4bd1ad82af7d6dd302a0bb11d6edd53964c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510287800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Sat Nov 08 14:36:11 EST 2025
Sat Nov 29 02:29:23 EST 2025
Fri Feb 21 02:36:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Multi-label
Inference
Classifier Chains
approximate algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-c048a7d63960b4f689c731137f81e4bd1ad82af7d6dd302a0bb11d6edd53964c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10651/55261
PQID 2415569921
PQPubID 43394
PageCount 30
ParticipantIDs proquest_journals_2415569921
crossref_primary_10_1007_s10115_020_01436_5
springer_journals_10_1007_s10115_020_01436_5
PublicationCentury 2000
PublicationDate 20200700
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Cheng, Hüllermeier (CR2) 2009; 76
Lin, Weng, Keerthi (CR16) 2008; 9
Read, Martino, Olmos, Luengo (CR28) 2015; 48
Kumar, Vembu, Menon, Elkan (CR14) 2012; 2012
CR18
CR17
CR13
Zhang, Zhou (CR37) 2007; 40
Dembczyński, Cheng, Hüllermeier (CR4) 2010; 2010
CR12
CR34
CR33
CR10
Mena, Montañés, Quevedo, del Coz (CR20) 2017; 106
Read, Pfahringer, Holmes, Frank (CR31) 2011; 85
CR30
Schapire, Singer (CR32) 2000; 39
Kumar, Vembu, Menon, Elkan (CR15) 2013; 92
García, Herrera (CR9) 2008; 9
Mena, Quevedo, Montañés, del Coz (CR21) 2017; 126
CR3
Brier (CR1) 1950; 78
CR7
Fürnkranz, Hüllermeier, Loza Mencía, Brinker (CR8) 2008; 73
CR29
CR26
CR25
CR24
CR22
Gibaja, Ventura (CR11) 2015; 47
Montañés, Senge, Barranquero, Quevedo, del Coz, Hüllermeier (CR23) 2014; 47
Wu, Lin (CR35) 2017; 106
Dembczynski, Waegeman, Hüllermeier (CR6) 2012; 242
Read, Martino, Luengo (CR27) 2014; 47
Mena, Montañés, Quevedo, del Coz (CR19) 2016; 6
Zhang, Zhou (CR36) 2006; 18
Dembczyński, Waegeman, Cheng, Hüllermeier (CR5) 2012; 88
D Mena (1436_CR20) 2017; 106
J Read (1436_CR28) 2015; 48
ML Zhang (1436_CR36) 2006; 18
K Dembczyński (1436_CR4) 2010; 2010
D Mena (1436_CR19) 2016; 6
S García (1436_CR9) 2008; 9
E Montañés (1436_CR23) 2014; 47
1436_CR30
A Kumar (1436_CR14) 2012; 2012
W Cheng (1436_CR2) 2009; 76
1436_CR10
K Dembczyński (1436_CR5) 2012; 88
1436_CR17
1436_CR18
1436_CR33
1436_CR12
1436_CR34
1436_CR13
K Dembczynski (1436_CR6) 2012; 242
1436_CR3
A Kumar (1436_CR15) 2013; 92
1436_CR7
J Fürnkranz (1436_CR8) 2008; 73
E Gibaja (1436_CR11) 2015; 47
D Mena (1436_CR21) 2017; 126
J Read (1436_CR27) 2014; 47
RE Schapire (1436_CR32) 2000; 39
GW Brier (1436_CR1) 1950; 78
CJ Lin (1436_CR16) 2008; 9
1436_CR26
ML Zhang (1436_CR37) 2007; 40
1436_CR29
YP Wu (1436_CR35) 2017; 106
1436_CR22
1436_CR24
1436_CR25
J Read (1436_CR31) 2011; 85
References_xml – ident: CR22
– volume: 242
  start-page: 294
  year: 2012
  end-page: 299
  ident: CR6
  article-title: An analysis of chaining in multi-label classification
  publication-title: Front Artif Intell Appl
– ident: CR18
– volume: 2010
  start-page: 279
  year: 2010
  end-page: 286
  ident: CR4
  article-title: Bayes optimal multilabel classification via probabilistic classifier chains
  publication-title: ICML
– ident: CR12
– ident: CR30
– volume: 78
  start-page: 1
  issue: 1
  year: 1950
  end-page: 3
  ident: CR1
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– ident: CR10
– ident: CR33
– volume: 9
  start-page: 627
  issue: Apr
  year: 2008
  end-page: 650
  ident: CR16
  article-title: Trust region Newton method for logistic regression
  publication-title: J Machine Learn Res
– ident: CR29
– volume: 47
  start-page: 52:1
  issue: 3
  year: 2015
  end-page: 52:38
  ident: CR11
  article-title: A tutorial on multilabel learning
  publication-title: ACM Comput Surv
  doi: 10.1145/2716262
– volume: 39
  start-page: 135
  year: 2000
  end-page: 168
  ident: CR32
  article-title: Boostexter: a boosting-based system for text categorization
  publication-title: Machine Learn
  doi: 10.1023/A:1007649029923
– ident: CR25
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  end-page: 1508
  ident: CR23
  article-title: Dependent binary relevance models for multi-label classification
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.09.029
– volume: 2012
  start-page: 665
  year: 2012
  end-page: 680
  ident: CR14
  article-title: Learning and inference in probabilistic classifier chains with beam search
  publication-title: ECML/PKDD
– volume: 48
  start-page: 2096
  issue: 6
  year: 2015
  end-page: 2109
  ident: CR28
  article-title: Scalable multi-output label prediction: from classifier chains to classifier trellises
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.01.004
– volume: 88
  start-page: 5
  issue: 1–2
  year: 2012
  end-page: 45
  ident: CR5
  article-title: On label dependence and loss minimization in multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5285-8
– volume: 6
  start-page: 215
  issue: 6
  year: 2016
  end-page: 230
  ident: CR19
  article-title: An overview of inference methods in probabilistic classifier chains for multilabel classification
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1185
– ident: CR3
– volume: 126
  start-page: 78
  year: 2017
  end-page: 90
  ident: CR21
  article-title: A heuristic in A* for inference in nonlinear probabilistic classifier chains
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.03.015
– volume: 106
  start-page: 671
  issue: 5
  year: 2017
  end-page: 694
  ident: CR35
  article-title: Progressive random k-labelsets for cost-sensitive multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5600-x
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  end-page: 2048
  ident: CR37
  article-title: Ml-knn: a lazy learning approach to multi-label learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– volume: 47
  start-page: 1535
  issue: 3
  year: 2014
  end-page: 1546
  ident: CR27
  article-title: Efficient monte carlo methods for multi-dimensional learning with classifier chains
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.10.006
– ident: CR17
– volume: 106
  start-page: 143
  issue: 1
  year: 2017
  end-page: 169
  ident: CR20
  article-title: A family of admissible heuristics for A* to perform inference in probabilistic classifier chains
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5593-5
– ident: CR13
– volume: 73
  start-page: 133
  year: 2008
  end-page: 153
  ident: CR8
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5064-8
– ident: CR34
– volume: 18
  start-page: 1338
  year: 2006
  end-page: 1351
  ident: CR36
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2006.162
– volume: 76
  start-page: 211
  issue: 2–3
  year: 2009
  end-page: 225
  ident: CR2
  article-title: Combining instance-based learning and logistic regression for multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5127-5
– ident: CR7
– volume: 9
  start-page: 2677
  issue: 12
  year: 2008
  end-page: 2694
  ident: CR9
  article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
  publication-title: J Machine Learn Res
– ident: CR26
– ident: CR24
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  end-page: 359
  ident: CR31
  article-title: Classifier chains for multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5256-5
– volume: 92
  start-page: 65
  issue: 1
  year: 2013
  end-page: 89
  ident: CR15
  article-title: Beam search algorithms for multi-label learning
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5371-6
– volume: 2010
  start-page: 279
  year: 2010
  ident: 1436_CR4
  publication-title: ICML
– volume: 126
  start-page: 78
  year: 2017
  ident: 1436_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.03.015
– volume: 9
  start-page: 2677
  issue: 12
  year: 2008
  ident: 1436_CR9
  publication-title: J Machine Learn Res
– ident: 1436_CR26
– ident: 1436_CR3
  doi: 10.1007/3-540-44794-6_4
– volume: 39
  start-page: 135
  year: 2000
  ident: 1436_CR32
  publication-title: Machine Learn
  doi: 10.1023/A:1007649029923
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 1436_CR37
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– ident: 1436_CR10
  doi: 10.21236/ADA440081
– ident: 1436_CR17
– ident: 1436_CR30
  doi: 10.1007/978-3-642-04174-7_17
– volume: 106
  start-page: 671
  issue: 5
  year: 2017
  ident: 1436_CR35
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5600-x
– volume: 47
  start-page: 52:1
  issue: 3
  year: 2015
  ident: 1436_CR11
  publication-title: ACM Comput Surv
  doi: 10.1145/2716262
– ident: 1436_CR29
  doi: 10.1109/ICDM.2008.74
– ident: 1436_CR22
  doi: 10.1007/978-3-642-23783-6_31
– volume: 18
  start-page: 1338
  year: 2006
  ident: 1436_CR36
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2006.162
– ident: 1436_CR13
  doi: 10.1109/ICTAI.2013.76
– volume: 106
  start-page: 143
  issue: 1
  year: 2017
  ident: 1436_CR20
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5593-5
– ident: 1436_CR34
– ident: 1436_CR7
– volume: 48
  start-page: 2096
  issue: 6
  year: 2015
  ident: 1436_CR28
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.01.004
– ident: 1436_CR33
– volume: 73
  start-page: 133
  year: 2008
  ident: 1436_CR8
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5064-8
– ident: 1436_CR25
– volume: 242
  start-page: 294
  year: 2012
  ident: 1436_CR6
  publication-title: Front Artif Intell Appl
– ident: 1436_CR24
  doi: 10.1109/FUZZ-IEEE.2015.7337815
– volume: 76
  start-page: 211
  issue: 2–3
  year: 2009
  ident: 1436_CR2
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5127-5
– ident: 1436_CR18
– volume: 6
  start-page: 215
  issue: 6
  year: 2016
  ident: 1436_CR19
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1185
– volume: 2012
  start-page: 665
  year: 2012
  ident: 1436_CR14
  publication-title: ECML/PKDD
– volume: 47
  start-page: 1535
  issue: 3
  year: 2014
  ident: 1436_CR27
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.10.006
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  ident: 1436_CR23
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.09.029
– volume: 9
  start-page: 627
  issue: Apr
  year: 2008
  ident: 1436_CR16
  publication-title: J Machine Learn Res
– ident: 1436_CR12
  doi: 10.1007/978-3-540-24775-3_5
– volume: 78
  start-page: 1
  issue: 1
  year: 1950
  ident: 1436_CR1
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 1436_CR31
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5256-5
– volume: 88
  start-page: 5
  issue: 1–2
  year: 2012
  ident: 1436_CR5
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5285-8
– volume: 92
  start-page: 65
  issue: 1
  year: 2013
  ident: 1436_CR15
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5371-6
SSID ssj0017611
Score 2.2185256
Snippet Probabilistic Classifier Chains are a multi-label classification method which has gained the attention of researchers in recent years. This is because of their...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2709
SubjectTerms Algorithms
Chains
Classifiers
Computational efficiency
Computer Science
Computer simulation
Computing costs
Computing time
Conditional probability
Data Mining and Knowledge Discovery
Database Management
Heuristic methods
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Optimization
Regular Paper
Searching
Statistical analysis
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagMLBQfkWhIA9sYBEndppMCFVUCImqA0jdIsd2aCRISxMQL8Zz8EqcXacRSLCwZEl8iu58d5_t830InUrIIcwXnPCApYSlipGUSgEPn0o_5FxmwpJN9IbDaDyOR27DrXRllXVMtIFaTaXZI78wmYaHcezTy9kLMaxR5nTVUWisojWDbExJ353XX54iwBLdMuaBVxLTWc9dmnFX52AEMYsn0-EuJPx7YmrQ5o8DUpt3Bu3__vEW2nSIE18tpsg2WtHFDmrXbA7YOfcuul3uL2AAhfjzg9h-4-85YFqNxdMjyK4mzxhQLh7NIQyYslrT5RlbYs08gwSL-xORF-Ueehhc3_dviGNaIDKgrCIS_Fj0FKCV0EtZFkax7AUUVJZFVIMBqVCRLzL4QqnA84WXppSqUCvFYQiTwT5qFdNCHyAcACDJNI9FpH2m0kwozjJP6xjWv6DytIPOajUns0VDjaRpnWyMkoBREmuUhHdQt9Zt4pyrTBrFdtB5bZ3m9e_SDv-WdoQ2fDshTDFuF7Wq-as-RuvyrcrL-YmdWl_djtTD
  priority: 102
  providerName: ProQuest
Title Improving the ϵ-approximate algorithm for Probabilistic Classifier Chains
URI https://link.springer.com/article/10.1007/s10115-020-01436-5
https://www.proquest.com/docview/2415569921
Volume 62
WOSCitedRecordID wos000510287800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0B5cCFHVGWygduYClO7CxHqKgQiKoqO5fIsR2IBAW1BfFjfAe_xNhNKCA4wMVSFMeKnj2ZN5kNYEuhDuG-FFQEPKM805xmTEkcfKb8UAiVS9dsImq348vLpFMmhQ2qaPfKJem-1J-S3ZC9UGvu2Jp0IRWTUEN1F9uGDd2T8w_fARrmrk8eyiK19fTKVJmf1_iqjsYc85tb1Gmb1tz_3nMeZkt2SXZHx2EBJkxvEeaqzg2kFOQlOPz4l0CQAJK3V-pqi78UyF8NkXc3D_1ieHtPkNGSTh9F3obQ2orOxDXRLHJUpqR5K4veYBnOWvunzQNadlWgKmB8SBXKrIw0MpPQy3gexomKAoZA5TEzuFlM6tiXOc7QOvB86WUZYzo0Wgt8hKtgBaZ6Dz2zCiRA8pEbkcjY-FxnudSC554xCdq6CEJWh-0K3PRxVDwjHZdJtjClCFPqYEpFHTYq_NNSkAapJRgiTBKf1WGnwnt8-_fV1v42fR1mfLdlNhB3A6aG_SezCdPqeVgM-g2YjC6uGlDb2293unh1FFEcj70mjh1x3XAH8B0Jl9AF
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB3RFKlcSPlSQ2nxAU5gEXvt_TgghGgREIhyCBK3xWt7IVJJQhLa8qe48Tv4S4ydXSKQ4MaBy15211rvPM882-N5AGsaY4jgSlIZiIyKzAiaMa3wwpnmoZQ6V15sImo247OzpDUFd-VZGJdWWfpE76hNT7s18i0XaWSYJJzt9K-pU41yu6ulhMYYFg17-w-nbMPtw19o33XO93-39w5ooSpAdcDEiGrErIoMRuawnok8jBMdBYwFUR4zix_LlIm5yvEJY4I6V_UsY8yE1hiJrwgdYLuf4LMI4siNq0ZEn3YtotDr_WLYTKir5Fcc0imO6iH3om6y5irqhVQ-D4QTdvtiQ9bHuf3qR_tDX2G2YNRkdzwE5mDKduehWqpVkMJ5LcDR0_oJQdJLHu6pr6f-v4Oc3RL15wL7Mrq8IsjiSWuAbs6lDbsq1sQLh3ZyJBBk71J1usNFOH2XHi1Bpdvr2m9AAiRcuZWJii0XJsuVkSKvW5vg_B5NnNVgozRr2h8XDEknpaEdCFIEQepBkMoarJS2TAvnMUwnhqzBZomGye3XW1t-u7VV-HLQPjlOjw-bje8wwz0YXeLxClRGgxv7A6b131FnOPjpYU3g_L1R8ghAAjHF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RiqpeSstD3RaKD3AqFmvHzuOAKgRdddlqtQeQEJfg-NFdqezCZvv6YVz6J_qXOvYmRK0ENw5cckliJZkvM9_Y4_kAtjXGEMGVpDISBRWFEbRgWuGBM81jKbVTQWwi6ffTs7NssAC_670wvqyy9onBUZuJ9nPkez7SyDjLONtzVVnE4Kjz4eqaegUpv9Jay2nMIdKzv35g-lbud4_Q1jucdz6eHH6ilcIA1RETM6oRvyoxGKXjdiFcnGY6iRiLEpcyiw_OlEm5cniFMVGbq3ZRMGZia4zEW4SOcNwn8DTBHNOXEw7k-e0KRhIH7V8MoRn1Xf2qDTvVtj3kYdQnbr67Xkzlv0GxYbr_Lc6GmNdZfsxf6yW8qJg2OZj_Gq9gwY5XYLlWsSCVU1uF49t5FYJkmPy5oaHP-s8RcnlL1Ncv-C6z4SVBdk8GU3R_vpzYd7cmQVB05JBYkMOhGo3LNTh9kDdah8XxZGxfA4mQiDkrM5VaLkzhlJHCta3NMO9HcxcteF-bOL-aNxLJm5bRHhA5AiIPgMhlCzZqu-aVUynzxqgt2K2R0Zy-e7Q394-2Bc8QHPnnbr_3Fp7zgEtfj7wBi7PpN7sJS_r7bFRO3wWEE7h4aJD8BdUHOuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+%CF%B5-approximate+algorithm+for+Probabilistic+Classifier+Chains&rft.jtitle=Knowledge+and+information+systems&rft.au=Fdez-D%C3%ADaz%2C+Miriam&rft.au=Fdez-D%C3%ADaz%2C+Laura&rft.au=Mena%2C+Deiner&rft.au=Monta%C3%B1%C3%A9s%2C+Elena&rft.date=2020-07-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=62&rft.issue=7&rft.spage=2709&rft.epage=2738&rft_id=info:doi/10.1007%2Fs10115-020-01436-5&rft.externalDocID=10_1007_s10115_020_01436_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon