Parameterized Complexity of Streaming Diameter and Connectivity Problems

We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 86; číslo 9; s. 2885 - 2928
Hlavní autoři: Oostveen, Jelle J., van Leeuwen, Erik Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2024
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O ( log n ) for any fixed k . Underlying these algorithms is a method to execute a breadth-first search in O ( k ) passes and O ( k log n ) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω ( n / p ) bits of memory is needed for any p -pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H , for most H . For some cases, we can also show one-pass, Ω ( n log n ) bits of memory lower bounds. We also prove a much stronger Ω ( n 2 / p ) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k . This yields a kernel of 2 k vertices (with O ( k 2 ) edges) produced as a stream in poly ( k ) passes and only O ( k log n ) bits of memory.
AbstractList We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $$\mathcal {O}(\log n)$$ O ( log n ) for any fixed k . Underlying these algorithms is a method to execute a breadth-first search in $$\mathcal {O}(k)$$ O ( k ) passes and $$\mathcal {O}(k \log n)$$ O ( k log n ) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $$\Omega (n/p)$$ Ω ( n / p ) bits of memory is needed for any p -pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H , for most H . For some cases, we can also show one-pass, $$\Omega (n \log n)$$ Ω ( n log n ) bits of memory lower bounds. We also prove a much stronger $$\Omega (n^2/p)$$ Ω ( n 2 / p ) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k . This yields a kernel of 2 k vertices (with $$\mathcal {O}(k^2)$$ O ( k 2 ) edges) produced as a stream in $$\text {poly}(k)$$ poly ( k ) passes and only $$\mathcal {O}(k \log n)$$ O ( k log n ) bits of memory.
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O ( log n ) for any fixed k . Underlying these algorithms is a method to execute a breadth-first search in O ( k ) passes and O ( k log n ) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω ( n / p ) bits of memory is needed for any p -pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H , for most H . For some cases, we can also show one-pass, Ω ( n log n ) bits of memory lower bounds. We also prove a much stronger Ω ( n 2 / p ) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k . This yields a kernel of 2 k vertices (with O ( k 2 ) edges) produced as a stream in poly ( k ) passes and only O ( k log n ) bits of memory.
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O(logn) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in O(k) passes and O(klogn) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(nlogn) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and only O(klogn) bits of memory.
Author Oostveen, Jelle J.
van Leeuwen, Erik Jan
Author_xml – sequence: 1
  givenname: Jelle J.
  surname: Oostveen
  fullname: Oostveen, Jelle J.
  email: j.j.oostveen@uu.nl
  organization: Department Information and Computing Sciences, Utrecht University
– sequence: 2
  givenname: Erik Jan
  surname: van Leeuwen
  fullname: van Leeuwen, Erik Jan
  email: e.j.vanleeuwen@uu.nl
  organization: Department Information and Computing Sciences, Utrecht University
BookMark eNp90M1Kw0AUBeBBKthWX8BVwPXonZ8kk6VUbYWCBXU9zExuS0ozqTOp2D69iRHcubqb75wLZ0JGvvFIyDWDWwaQ30UAmQoKXFJgXGb0dEbGTApOIZVsRMbAckVlxvILMolxC53Ki2xMFisTTI0thuqEZTJr6v0Ov6r2mDTr5LUNaOrKb5KHakCJ8T3yHl1bffZsFRq7wzpekvO12UW8-r1T8v70-DZb0OXL_Hl2v6ROMNlSK4sMnOEIJXKm0Fm0JdgcRVmUqZOFTaUtuDLACyd4hrlgwKTNlVHcgRJTcjP07kPzccDY6m1zCL57qTsJqhCZ6hUflAtNjAHXeh-q2oSjZqD7xfSwmO4W0z-L6VMXEkModthvMPxV_5P6BpeJcPE
Cites_doi 10.1145/2755573.2755618
10.1137/070683155
10.1007/978-3-030-86593-1_29
10.4230/LIPIcs.APPROX-RANDOM.2015.435
10.1137/1.9781611973082.2
10.1109/FOCS46700.2020.00041
10.1145/2488608.2488673
10.1007/978-3-030-58150-3_53
10.4230/LIPICS.IPEC.2022.24
10.1007/978-3-030-86838-3_25
10.1145/2629620
10.1145/3406325.3451110
10.1007/978-3-319-21275-3
10.4230/LIPIcs.APPROX/RANDOM.2022.51
10.1007/s00453-016-0138-7
10.1007/978-3-030-17402-6_5
10.1007/s00453-018-0520-8
10.4230/LIPIcs.IPEC.2019.7
10.1137/1.9781611975994.117
10.1145/2627692.2627694
10.1137/1.9781611973730.82
10.1145/1150402.1150410
10.1137/18M1193402
10.1137/1.9781611973105.121
10.1137/1.9781611973099.41
10.1002/net.21998
10.1145/3218821
10.1109/CCC.2003.1214414
10.1016/j.tcs.2005.09.013
10.1016/0020-0190(85)90024-9
10.1145/3406325.3451038
10.1007/978-1-4612-0515-9
10.4230/LIPIcs.IPEC.2016.16
10.1007/978-3-662-44465-8_24
10.1137/0202019
10.1137/1.9781611974331.ch92
10.1007/s00453-020-00680-z
10.1145/3310228
10.1016/S0166-218X(00)00281-X
10.1007/BF01580444
10.1145/2902251.2902283
10.1109/FOCS46700.2020.00040
10.1145/3387161
10.1137/0222038
10.1007/978-1-349-03521-2
10.4230/LIPIcs.STACS.2019.42
10.1145/3313276.3316361
10.1006/jagm.2001.1186
10.1137/1.9781611974331.ch28
10.1007/978-3-030-36412-0_13
10.1090/dimacs/050/05
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-024-01246-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2928
ExternalDocumentID 10_1007_s00453_024_01246_z
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: OCENW.KLEIN.114
  funderid: http://dx.doi.org/10.13039/501100003246
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c314t-b4960ca2e0de218ecbebd0b7e3d9d5c49b54b928a029c326e731014b78a82c083
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250261300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:07:21 EDT 2025
Sat Nov 29 02:20:34 EST 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Streaming
Permutation
Vertex cover
Graphs
Parameter
Connectivity
Stream
Diameter
Disjointness
Complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-b4960ca2e0de218ecbebd0b7e3d9d5c49b54b928a029c326e731014b78a82c083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00453-024-01246-z
PQID 3100893688
PQPubID 2043795
PageCount 44
ParticipantIDs proquest_journals_3100893688
crossref_primary_10_1007_s00453_024_01246_z
springer_journals_10_1007_s00453_024_01246_z
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bentert, M., Nichterlein, A.: Parameterized complexity of diameter. In: Heggernes, P. (ed.) Algorithms and Complexity—11th International Conference, CIAC 2019, Rome, Italy, May 27–29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11485, pp. 50–61. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17402-6_5
Ducoffe, G.: Beyond helly graphs: The diameter problem on absolute retracts. In: Kowalik, L., Pilipczuk, M., Rzazewski, P. (eds.) Graph-Theoretic Concepts in Computer Science—47th International Workshop, WG 2021, Warsaw, Poland, June 23–25, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12911, pp. 321–335. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-86838-3_25
HopcroftJEKarpRMAn n5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{5/2}$$\end{document} algorithm for maximum matchings in bipartite graphsSIAM J. Comput.19732422523133769910.1137/0202019
HuangZPengPDynamic graph stream algorithms in o(n) spaceAlgorithmica201981519651987396896810.1007/s00453-018-0520-8
Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed parameter tractability of graph deletion problems over data streams. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) Computing and Combinatorics—26th International Conference, COCOON 2020, Atlanta, GA, USA, August 29–31, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12273, pp. 652–663. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58150-3_53
Oostveen, J.J., van Leeuwen, E.J.: Streaming deletion problems parameterized by vertex cover. In: Bampis, E., Pagourtzis, A. (eds.) Fundamentals of Computation Theory—23rd International Symposium, FCT 2021, Athens, Greece, September 12–15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12867, pp. 413–426. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-86593-1_29
Elkin, M., Trehan, C.: (1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximate shortest paths in dynamic streams. In: Chakrabarti, A., Swamy, C. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19–21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference). LIPIcs, vol. 245, pp. 51–15123. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.51
FeigenbaumJKannanSMcGregorASuriSZhangJGraph distances in the data-stream modelSIAM J. Comput.200838517091727247627310.1137/070683155
Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20–22, 1998. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 50, pp. 107–118. DIMACS/AMS, Providence (1998). https://doi.org/10.1090/dimacs/050/05
ChenJKanjIAJiaWVertex cover: further observations and further improvementsJ. Algorithms2001412280301186925310.1006/jagm.2001.1186
Husfeldt, T.: Computing graph distances parameterized by treewidth and diameter. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24–26, 2016, Aarhus, Denmark. LIPIcs, vol. 63, pp. 16–11611. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.16
Ducoffe, G., Habib, M., Viennot, L.: Diameter computation on H-minor free graphs and graphs of bounded (distance) vc-dimension. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020, pp. 1905–1922. SIAM, Philadelphia (2020). https://doi.org/10.1137/1.9781611975994.117
Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed-parameter tractability of graph deletion problems over data streams. CoRR (2019). arXiv:abs/1906.05458
BringmannKHusfeldtTMagnussonMMultivariate analysis of orthogonal range searching and graph distancesAlgorithmica202082822922315413289210.1007/s00453-020-00680-z
Fafianie, S., Kratsch, S.: Streaming kernelization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8635, pp. 275–286. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_24
BussJFGoldsmithJNondeterminism within PSIAM J. Comput.1993223560572121904110.1137/0222038
CorneilDGDraganFFHabibMPaulCDiameter determination on restricted graph familiesDiscrete Appl. Math.20011132–3143166185777310.1016/S0166-218X(00)00281-X
Assadi, S., Vishvajeet, N.: Graph streaming lower bounds for parameter estimation and property testing via a streaming XOR lemma. In: Khuller, S., Williams, V.V. (eds.) STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21–25, 2021, pp. 612–625. ACM, New York (2021). https://doi.org/10.1145/3406325.3451110
DucoffeGDraganFFA story of diameter, radius, and (almost) helly propertyNetworks2021773435453426452610.1002/net.21998
DowneyRGFellowsMRParameterized Complexity1999New YorkSpringer10.1007/978-1-4612-0515-9
Bishnu, A., Ghosh, A., Mishra, G., Sen, S.: On the streaming complexity of fundamental geometric problems. CoRR (2018). arXiv:1803.06875
Ducoffe, G., Habib, M., Viennot, L.: Fast diameter computation within split graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) Combinatorial Optimization and Applications—13th International Conference, COCOA 2019, Xiamen, China, December 13–15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11949, pp. 155–167. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-36412-0_13
Verbin, E., Yu, W.: The streaming complexity of cycle counting, sorting by reversals, and other problems. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, pp. 11–25. SIAM, Philadelphia (2011). https://doi.org/10.1137/1.9781611973082.2
Assadi, S., Kol, G., Saxena, R.R., Yu, H.: Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 354–364. IEEE, Washington, DC (2020). https://doi.org/10.1109/FOCS46700.2020.00041
CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. In: Nagl, M., Perl, J. (eds.) Proceedings of the WG’83, International Workshop on Graphtheoretic Concepts in Computer Science, June 16–18, 1983, Haus Ohrbeck, Near Osnabrück, Germany, pp. 17–28. Universitätsverlag Rudolf Trauner, Linz (1983)
Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 1326–1344. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974331.ch92
Oostveen, J.J., van Leeuwen, E.J.: Parameterized complexity of streaming diameter and connectivity problems. In: Dell, H., Nederlof, J. (eds.) 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7–9, 2022, Potsdam, Germany. LIPIcs, vol. 249, pp. 24–12416. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPICS.IPEC.2022.24
CabelloSSubquadratic algorithms for the diameter and the sum of pairwise distances in planar graphsACM Trans. Algorithms20191522112138395109410.1145/3218821
Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Brief announcement: New streaming algorithms for parameterized maximal matching and beyond. In: Blelloch, G.E., Agrawal, K. (eds.) Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13–15, 2015, pp. 56–58. ACM, New York (2015). https://doi.org/10.1145/2755573.2755618
ElkinMDistributed exact shortest paths in sublinear timeJ. ACM20206731511536410354910.1145/3387161
Chitnis, R.H., Cormode, G., Hajiaghayi, M.T., Monemizadeh, M.: Parameterized streaming: maximal matching and vertex cover. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 1234–1251. SIAM, Philadelphia (2015). https://doi.org/10.1137/1.9781611973730.82
GawrychowskiPKaplanHMozesSSharirMWeimannOVoronoi diagrams on planar graphs, and computing the diameter in deterministic õ(n5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{{5/3}}$$\end{document}) timeSIAM J. Comput.2021502509554423801710.1137/18M1193402
Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams. In: Garg, N., Jansen, K., Rao, A., Rolim, J.D.P. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24–26, 2015, Princeton,
J Feigenbaum (1246_CR4) 2008; 38
1246_CR27
M Cygan (1246_CR45) 2015
1246_CR29
1246_CR20
1246_CR25
J Chen (1246_CR23) 2001; 41
1246_CR26
D Coudert (1246_CR36) 2019; 15
H Dell (1246_CR21) 2014; 61
DG Corneil (1246_CR39) 2001; 113
1246_CR30
1246_CR31
JF Buss (1246_CR22) 1993; 22
1246_CR32
1246_CR1
1246_CR34
1246_CR2
1246_CR35
G Ducoffe (1246_CR41) 2021; 77
J Feigenbaum (1246_CR3) 2005; 348
1246_CR37
1246_CR5
RG Downey (1246_CR11) 1999
1246_CR9
1246_CR7
S Cabello (1246_CR38) 2019; 15
P Gawrychowski (1246_CR44) 2021; 50
V Guruswami (1246_CR24) 2016; 76
1246_CR49
1246_CR42
1246_CR43
1246_CR46
Z Huang (1246_CR28) 2019; 81
1246_CR47
1246_CR48
K Bringmann (1246_CR33) 2020; 82
1246_CR40
JE Hopcroft (1246_CR54) 1973; 2
GL Nemhauser (1246_CR51) 1975; 8
1246_CR16
1246_CR17
1246_CR18
1246_CR19
M Elkin (1246_CR8) 2020; 67
1246_CR52
A McGregor (1246_CR6) 2014; 43
1246_CR12
1246_CR13
1246_CR14
JA Bondy (1246_CR53) 1976
JH Reif (1246_CR10) 1985; 20
1246_CR15
1246_CR50
References_xml – reference: Chen, L., Kol, G., Paramonov, D., Saxena, R.R., Song, Z., Yu, H.: Almost optimal super-constant-pass streaming lower bounds for reachability. In: Khuller, S., Williams, V.V. (eds.) STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21–25, 2021, pp. 570–583. ACM, New York (2021). https://doi.org/10.1145/3406325.3451038
– reference: ReifJHDepth-first search is inherently sequentialInf. Process. Lett.198520522923480198710.1016/0020-0190(85)90024-9
– reference: ElkinMDistributed exact shortest paths in sublinear timeJ. ACM20206731511536410354910.1145/3387161
– reference: Bentert, M., Nichterlein, A.: Parameterized complexity of diameter. In: Heggernes, P. (ed.) Algorithms and Complexity—11th International Conference, CIAC 2019, Rome, Italy, May 27–29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11485, pp. 50–61. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17402-6_5
– reference: Chitnis, R., Cormode, G.: Towards a theory of parameterized streaming algorithms. In: Jansen, B.M.P., Telle, J.A. (eds.) 14th International Symposium on Parameterized and Exact Computation, IPEC 2019, September 11–13, 2019, Munich, Germany. LIPIcs, vol. 148, pp. 7–1715. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2019). https://doi.org/10.4230/LIPIcs.IPEC.2019.7
– reference: BondyJAMurtyUSRGraph Theory with Applications1976LondonMacmillan Education UK10.1007/978-1-349-03521-2
– reference: DowneyRGFellowsMRParameterized Complexity1999New YorkSpringer10.1007/978-1-4612-0515-9
– reference: Fafianie, S., Kratsch, S.: Streaming kernelization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8635, pp. 275–286. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_24
– reference: Ducoffe, G., Habib, M., Viennot, L.: Diameter computation on H-minor free graphs and graphs of bounded (distance) vc-dimension. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020, pp. 1905–1922. SIAM, Philadelphia (2020). https://doi.org/10.1137/1.9781611975994.117
– reference: Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. In: Nagl, M., Perl, J. (eds.) Proceedings of the WG’83, International Workshop on Graphtheoretic Concepts in Computer Science, June 16–18, 1983, Haus Ohrbeck, Near Osnabrück, Germany, pp. 17–28. Universitätsverlag Rudolf Trauner, Linz (1983)
– reference: Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20–22, 1998. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 50, pp. 107–118. DIMACS/AMS, Providence (1998). https://doi.org/10.1090/dimacs/050/05
– reference: Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed parameter tractability of graph deletion problems over data streams. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) Computing and Combinatorics—26th International Conference, COCOON 2020, Atlanta, GA, USA, August 29–31, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12273, pp. 652–663. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58150-3_53
– reference: BussJFGoldsmithJNondeterminism within PSIAM J. Comput.1993223560572121904110.1137/0222038
– reference: Ducoffe, G., Habib, M., Viennot, L.: Fast diameter computation within split graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) Combinatorial Optimization and Applications—13th International Conference, COCOA 2019, Xiamen, China, December 13–15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11949, pp. 155–167. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-36412-0_13
– reference: CoudertDDucoffeGPopaAFully polynomial FPT algorithms for some classes of bounded clique-width graphsACM Trans. Algorithms20191533313357400044910.1145/3310228
– reference: BringmannKHusfeldtTMagnussonMMultivariate analysis of orthogonal range searching and graph distancesAlgorithmica202082822922315413289210.1007/s00453-020-00680-z
– reference: Assadi, S., Vishvajeet, N.: Graph streaming lower bounds for parameter estimation and property testing via a streaming XOR lemma. In: Khuller, S., Williams, V.V. (eds.) STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21–25, 2021, pp. 612–625. ACM, New York (2021). https://doi.org/10.1145/3406325.3451110
– reference: Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7–10 July 2003, Aarhus, Denmark, pp. 107–117. IEEE Computer Society, Washington, DC (2003). https://doi.org/10.1109/CCC.2003.1214414
– reference: Khan, S., Mehta, S.K.: Depth first search in the semi-streaming model. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13–16, 2019, Berlin, Germany. LIPIcs, vol. 126, pp. 42–14216. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2019). https://doi.org/10.4230/LIPIcs.STACS.2019.42
– reference: Assadi, S., Raz, R.: Near-quadratic lower bounds for two-pass graph streaming algorithms. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 342–353. IEEE, Washington, DC (2020). https://doi.org/10.1109/FOCS46700.2020.00040
– reference: FeigenbaumJKannanSMcGregorASuriSZhangJOn graph problems in a semi-streaming modelTheor. Comput. Sci.20053482–3207216218137610.1016/j.tcs.2005.09.013
– reference: Ducoffe, G.: Beyond helly graphs: The diameter problem on absolute retracts. In: Kowalik, L., Pilipczuk, M., Rzazewski, P. (eds.) Graph-Theoretic Concepts in Computer Science—47th International Workshop, WG 2021, Warsaw, Poland, June 23–25, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12911, pp. 321–335. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-86838-3_25
– reference: Bishnu, A., Ghosh, A., Mishra, G., Sen, S.: On the streaming complexity of fundamental geometric problems. CoRR (2018). arXiv:1803.06875
– reference: Elkin, M., Trehan, C.: (1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximate shortest paths in dynamic streams. In: Chakrabarti, A., Swamy, C. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19–21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference). LIPIcs, vol. 245, pp. 51–15123. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.51
– reference: CorneilDGDraganFFHabibMPaulCDiameter determination on restricted graph familiesDiscrete Appl. Math.20011132–3143166185777310.1016/S0166-218X(00)00281-X
– reference: Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., Monemizadeh, M.: Brief announcement: New streaming algorithms for parameterized maximal matching and beyond. In: Blelloch, G.E., Agrawal, K. (eds.) Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13–15, 2015, pp. 56–58. ACM, New York (2015). https://doi.org/10.1145/2755573.2755618
– reference: Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams. In: Garg, N., Jansen, K., Rao, A., Rolim, J.D.P. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24–26, 2015, Princeton, NJ, USA. LIPIcs, vol. 40, pp. 435–448. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
– reference: HopcroftJEKarpRMAn n5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{5/2}$$\end{document} algorithm for maximum matchings in bipartite graphsSIAM J. Comput.19732422523133769910.1137/0202019
– reference: Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spatial scan statistics: approximations and performance study. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20–23, 2006, pp. 24–33. ACM, New York (2006). https://doi.org/10.1145/1150402.1150410
– reference: CabelloSSubquadratic algorithms for the diameter and the sum of pairwise distances in planar graphsACM Trans. Algorithms20191522112138395109410.1145/3218821
– reference: Chitnis, R., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 1326–1344. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974331.ch92
– reference: Verbin, E., Yu, W.: The streaming complexity of cycle counting, sorting by reversals, and other problems. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, pp. 11–25. SIAM, Philadelphia (2011). https://doi.org/10.1137/1.9781611973082.2
– reference: Kapralov, M.: Better bounds for matchings in the streaming model. In: Khanna, S. (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6–8, 2013, pp. 1679–1697. SIAM, Philadelphia (2013). https://doi.org/10.1137/1.9781611973105.121
– reference: Oostveen, J.J., van Leeuwen, E.J.: Streaming deletion problems parameterized by vertex cover. In: Bampis, E., Pagourtzis, A. (eds.) Fundamentals of Computation Theory—23rd International Symposium, FCT 2021, Athens, Greece, September 12–15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12867, pp. 413–426. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-86593-1_29
– reference: Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, pp. 468–485. SIAM, Philadelphia (2012). https://doi.org/10.1137/1.9781611973099.41
– reference: McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles in data streams. In: Milo, T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 401–411. ACM, New York (2016). https://doi.org/10.1145/2902251.2902283
– reference: Bishnu, A., Ghosh, A., Kolay, S., Mishra, G., Saurabh, S.: Fixed-parameter tractability of graph deletion problems over data streams. CoRR (2019). arXiv:abs/1906.05458
– reference: DucoffeGDraganFFA story of diameter, radius, and (almost) helly propertyNetworks2021773435453426452610.1002/net.21998
– reference: CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
– reference: GuruswamiVOnakKSuperlinear lower bounds for multipass graph processingAlgorithmica2016763654683355128210.1007/s00453-016-0138-7
– reference: GawrychowskiPKaplanHMozesSSharirMWeimannOVoronoi diagrams on planar graphs, and computing the diameter in deterministic õ(n5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{{5/3}}$$\end{document}) timeSIAM J. Comput.2021502509554423801710.1137/18M1193402
– reference: HuangZPengPDynamic graph stream algorithms in o(n) spaceAlgorithmica201981519651987396896810.1007/s00453-018-0520-8
– reference: Assadi, S., Kol, G., Saxena, R.R., Yu, H.: Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 354–364. IEEE, Washington, DC (2020). https://doi.org/10.1109/FOCS46700.2020.00041
– reference: Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 377–391. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974331.ch28
– reference: McGregorAGraph stream algorithms: a surveySIGMOD Rec.201443192010.1145/2627692.2627694
– reference: Oostveen, J.J., van Leeuwen, E.J.: Parameterized complexity of streaming diameter and connectivity problems. In: Dell, H., Nederlof, J. (eds.) 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7–9, 2022, Potsdam, Germany. LIPIcs, vol. 249, pp. 24–12416. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPICS.IPEC.2022.24
– reference: NemhauserGLTrotterLEJrVertex packings: structural properties and algorithmsMath. Program.19758123224836673810.1007/BF01580444
– reference: ChenJKanjIAJiaWVertex cover: further observations and further improvementsJ. Algorithms2001412280301186925310.1006/jagm.2001.1186
– reference: DellHvan MelkebeekDSatisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapsesJ. ACM20146142312327325006910.1145/2629620
– reference: Assadi, S., Chen, Y., Khanna, S.: Polynomial pass lower bounds for graph streaming algorithms. CoRR (2019). arXiv:abs/1904.04720
– reference: Chitnis, R.H., Cormode, G., Hajiaghayi, M.T., Monemizadeh, M.: Parameterized streaming: maximal matching and vertex cover. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 1234–1251. SIAM, Philadelphia (2015). https://doi.org/10.1137/1.9781611973730.82
– reference: FeigenbaumJKannanSMcGregorASuriSZhangJGraph distances in the data-stream modelSIAM J. Comput.200838517091727247627310.1137/070683155
– reference: Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1–4, 2013, pp. 515–524. ACM, New York (2013). https://doi.org/10.1145/2488608.2488673
– reference: Husfeldt, T.: Computing graph distances parameterized by treewidth and diameter. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24–26, 2016, Aarhus, Denmark. LIPIcs, vol. 63, pp. 16–11611. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.16
– ident: 1246_CR47
  doi: 10.1145/2755573.2755618
– volume: 38
  start-page: 1709
  issue: 5
  year: 2008
  ident: 1246_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/070683155
– ident: 1246_CR52
– ident: 1246_CR17
  doi: 10.1007/978-3-030-86593-1_29
– ident: 1246_CR5
  doi: 10.4230/LIPIcs.APPROX-RANDOM.2015.435
– ident: 1246_CR27
  doi: 10.1137/1.9781611973082.2
– ident: 1246_CR29
  doi: 10.1109/FOCS46700.2020.00041
– ident: 1246_CR32
  doi: 10.1145/2488608.2488673
– ident: 1246_CR16
  doi: 10.1007/978-3-030-58150-3_53
– ident: 1246_CR1
  doi: 10.4230/LIPICS.IPEC.2022.24
– ident: 1246_CR40
  doi: 10.1007/978-3-030-86838-3_25
– volume: 61
  start-page: 23
  issue: 4
  year: 2014
  ident: 1246_CR21
  publication-title: J. ACM
  doi: 10.1145/2629620
– ident: 1246_CR30
  doi: 10.1145/3406325.3451110
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 1246_CR45
  doi: 10.1007/978-3-319-21275-3
– ident: 1246_CR9
  doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.51
– volume: 76
  start-page: 654
  issue: 3
  year: 2016
  ident: 1246_CR24
  publication-title: Algorithmica
  doi: 10.1007/s00453-016-0138-7
– ident: 1246_CR37
  doi: 10.1007/978-3-030-17402-6_5
– volume: 81
  start-page: 1965
  issue: 5
  year: 2019
  ident: 1246_CR28
  publication-title: Algorithmica
  doi: 10.1007/s00453-018-0520-8
– ident: 1246_CR14
  doi: 10.4230/LIPIcs.IPEC.2019.7
– ident: 1246_CR43
  doi: 10.1137/1.9781611975994.117
– volume: 43
  start-page: 9
  issue: 1
  year: 2014
  ident: 1246_CR6
  publication-title: SIGMOD Rec.
  doi: 10.1145/2627692.2627694
– ident: 1246_CR13
  doi: 10.1137/1.9781611973730.82
– ident: 1246_CR49
  doi: 10.1145/1150402.1150410
– ident: 1246_CR48
– ident: 1246_CR46
  doi: 10.1007/978-3-030-58150-3_53
– volume: 50
  start-page: 509
  issue: 2
  year: 2021
  ident: 1246_CR44
  publication-title: SIAM J. Comput.
  doi: 10.1137/18M1193402
– ident: 1246_CR19
  doi: 10.1137/1.9781611973105.121
– ident: 1246_CR18
  doi: 10.1137/1.9781611973099.41
– volume: 77
  start-page: 435
  issue: 3
  year: 2021
  ident: 1246_CR41
  publication-title: Networks
  doi: 10.1002/net.21998
– volume: 15
  start-page: 21
  issue: 2
  year: 2019
  ident: 1246_CR38
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3218821
– ident: 1246_CR50
  doi: 10.1109/CCC.2003.1214414
– volume: 348
  start-page: 207
  issue: 2–3
  year: 2005
  ident: 1246_CR3
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.09.013
– volume: 20
  start-page: 229
  issue: 5
  year: 1985
  ident: 1246_CR10
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(85)90024-9
– ident: 1246_CR26
  doi: 10.1145/3406325.3451038
– volume-title: Parameterized Complexity
  year: 1999
  ident: 1246_CR11
  doi: 10.1007/978-1-4612-0515-9
– ident: 1246_CR35
  doi: 10.4230/LIPIcs.IPEC.2016.16
– ident: 1246_CR12
  doi: 10.1007/978-3-662-44465-8_24
– volume: 2
  start-page: 225
  issue: 4
  year: 1973
  ident: 1246_CR54
  publication-title: SIAM J. Comput.
  doi: 10.1137/0202019
– ident: 1246_CR15
  doi: 10.1137/1.9781611974331.ch92
– volume: 82
  start-page: 2292
  issue: 8
  year: 2020
  ident: 1246_CR33
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00680-z
– volume: 15
  start-page: 33
  issue: 3
  year: 2019
  ident: 1246_CR36
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3310228
– volume: 113
  start-page: 143
  issue: 2–3
  year: 2001
  ident: 1246_CR39
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(00)00281-X
– volume: 8
  start-page: 232
  issue: 1
  year: 1975
  ident: 1246_CR51
  publication-title: Math. Program.
  doi: 10.1007/BF01580444
– ident: 1246_CR20
  doi: 10.1145/2902251.2902283
– ident: 1246_CR25
  doi: 10.1109/FOCS46700.2020.00040
– volume: 67
  start-page: 15
  issue: 3
  year: 2020
  ident: 1246_CR8
  publication-title: J. ACM
  doi: 10.1145/3387161
– volume: 22
  start-page: 560
  issue: 3
  year: 1993
  ident: 1246_CR22
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222038
– volume-title: Graph Theory with Applications
  year: 1976
  ident: 1246_CR53
  doi: 10.1007/978-1-349-03521-2
– ident: 1246_CR7
  doi: 10.4230/LIPIcs.STACS.2019.42
– ident: 1246_CR31
  doi: 10.1145/3313276.3316361
– volume: 41
  start-page: 280
  issue: 2
  year: 2001
  ident: 1246_CR23
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2001.1186
– ident: 1246_CR34
  doi: 10.1137/1.9781611974331.ch28
– ident: 1246_CR42
  doi: 10.1007/978-3-030-36412-0_13
– ident: 1246_CR2
  doi: 10.1090/dimacs/050/05
SSID ssj0012796
Score 2.3849187
Snippet We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing...
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2885
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Graphs
Lower bounds
Mathematics of Computing
Parameterization
Parameters
Theory of Computation
Title Parameterized Complexity of Streaming Diameter and Connectivity Problems
URI https://link.springer.com/article/10.1007/s00453-024-01246-z
https://www.proquest.com/docview/3100893688
Volume 86
WOSCitedRecordID wos001250261300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sYCl17MQZEVB1QFUlHupmxY4rdSBFTYpEfz0-J2kFggHW5OREZ9_DurvvA7jUlqcy44LyWEwoD7kzKSs0DXXGdKTdA-1BXB_i4VCOx8moHgormm73piTpPfVq2A2zD6w5YtcE4xFdbsKWQLQZvKM_vqxqByz2rFzIO0-5C9D1qMzPa3wNR-sc81tZ1Eebfvt__7kHu3V2SW6q47APGzY_gHbD3EBqQz6EwSjFpizEaV7ajKAAAmOWH2Q2IVioTl_dJ8ndtBIiaY5CziWbimyCjCoemuIInvv3T7cDWnMqUBP2eEk1d1cWkzIbZNZFd2u01VmgYxtmSSYMT7TgOmEyDVhiXGpn4xDZfHUsU8mMy9eOoZXPcnsCRAbONcoe4jZF3NieZsEkFoYJKV1o5LYDV41q1VsFnaFWIMleScopSXklqWUHuo32VW1GhcLqg0uoIik7cN1oe_3699VO_yZ-BjvMbxj2jnWhVc4X9hy2zXs5LeYX_nh9Aisvykk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFPTi_MTp1By8aaBL0zY9ijomzjFwym6hSTPYwU3WKri_3ry03VD0oNf2kZaXvI_w3vv9AM6V4YlIeUB5FIwo97k1KRMo6quUqVDZB8qBuHajXk8Mh3G_HArLqm73qiTpPPVi2A2zD6w5YtcE4yGdr8IaR5odvKM_Pi9qByxyrFzIO0-5DdDlqMzPa3wNR8sc81tZ1EWbdv1__7kNW2V2Sa6K47ADK2ayC_WKuYGUhrwHnX6CTVmI0zw3KUEBBMbMP8h0RLBQnbzYT5KbcSFEkgkKWZesC7IJ0i94aLJ9eGrfDq47tORUoNpv8Zwqbq8sOmHGS42N7kYro1JPRcZP4zTQPFYBVzETicdibVM7E_nI5qsikQimbb52ALXJdGIOgQjPukbRQtymkGvTUswbRYFmgRA2NHLTgItKtfK1gM6QC5BkpyRplSSdkuS8Ac1K-7I0o0xi9cEmVKEQDbistL18_ftqR38TP4ONzuChK7t3vftj2GRu87CPrAm1fPZmTmBdv-fjbHbqjtonsIXNLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oFPHi_MTp1By8aViXpm16FOeYOEbxi91Ck6awg93YquD-epO03VT0IF7bR1pePt4Lv_d-P4BzoWjMEuphGngppi7VW0p5ArsiIcIX-oGwJK79YDBgw2EYferit9XuFSRZ9DQYlqYsb02StLVofDOZiMEfTQUFoT6er8Ia1TcZU9R1__C8wBFIYBW6jAY9pjpYl20zP4_xNTQt881vEKmNPN36__95G7bKrBNdFctkB1ZUtgv1StEBlRt8D3pRbIq1DH_zXCXIGBjCzPwdjVNkAOz4RX8edUaFEYozY6SPalmIUKCo0KeZ7cNT9-bxuodLrQUs3TbNsaD6KiNjopxE6aivpFAicUSg3CRMPElD4VEREhY7JJQ65VOBa1R-RcBiRqTO4w6glo0zdQiIOfrIZG3D5-RTqdqCOGngSeIxpkMmVQ24qNzMJwWlBl-QJ1snce0kbp3E5w1oVjPBy-014waV0ImWz1gDLivPL1__PtrR38zPYCPqdHn_dnB3DJvEzp0pL2tCLZ--qhNYl2_5aDY9tavuAwja1hE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Complexity+of+Streaming+Diameter+and+Connectivity+Problems&rft.jtitle=Algorithmica&rft.au=Oostveen%2C+Jelle+J.&rft.au=van+Leeuwen%2C+Erik+Jan&rft.date=2024-09-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=9&rft.spage=2885&rft.epage=2928&rft_id=info:doi/10.1007%2Fs00453-024-01246-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_024_01246_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon