Binary cyclic-gap constant weight codes with low-complexity encoding and decoding
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer ℓ ≥ 3 , we construct a ( n = 2 ℓ , M = 2 k ℓ...
Uloženo v:
| Vydáno v: | Designs, codes, and cryptography Ročník 92; číslo 12; s. 4247 - 4277 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-1022, 1573-7586 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size
M
=
2
k
so that codewords can conveniently be labeled with binary vectors of length
k
. For every integer
ℓ
≥
3
, we construct a
(
n
=
2
ℓ
,
M
=
2
k
ℓ
,
d
=
2
)
constant weight code
C
[
ℓ
]
of weight
ℓ
by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length
ℓ
satisfying a constraint defined as
anchor-decodability
that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size
k
, and that of the decoding algorithm is poly-logarithmic in the input size
n
, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that
C
[
ℓ
]
has the maximum size with
k
ℓ
≥
ℓ
2
-
ℓ
log
2
ℓ
+
log
2
ℓ
-
0.279
ℓ
-
0.721
. As
k
is upper bounded by
ℓ
2
-
ℓ
log
2
ℓ
+
O
(
ℓ
)
information-theoretically, the code
C
[
ℓ
]
is optimal in its size with respect to two higher order terms of
ℓ
. In particular,
k
ℓ
meets the upper bound for
ℓ
=
3
and one-bit away for
ℓ
=
4
. On the other hand, we show that
C
[
ℓ
]
is not unique in attaining
k
ℓ
by constructing an alternate code
C
^
[
ℓ
]
again parameterized by an integer
ℓ
≥
3
with a different low-complexity decoder, yet having the same size
2
k
ℓ
when
3
≤
ℓ
≤
7
. Finally, we also derive new codes by modifying
C
[
ℓ
]
that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal
k
. |
|---|---|
| AbstractList | In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size
M
=
2
k
so that codewords can conveniently be labeled with binary vectors of length
k
. For every integer
ℓ
≥
3
, we construct a
(
n
=
2
ℓ
,
M
=
2
k
ℓ
,
d
=
2
)
constant weight code
C
[
ℓ
]
of weight
ℓ
by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length
ℓ
satisfying a constraint defined as
anchor-decodability
that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size
k
, and that of the decoding algorithm is poly-logarithmic in the input size
n
, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that
C
[
ℓ
]
has the maximum size with
k
ℓ
≥
ℓ
2
-
ℓ
log
2
ℓ
+
log
2
ℓ
-
0.279
ℓ
-
0.721
. As
k
is upper bounded by
ℓ
2
-
ℓ
log
2
ℓ
+
O
(
ℓ
)
information-theoretically, the code
C
[
ℓ
]
is optimal in its size with respect to two higher order terms of
ℓ
. In particular,
k
ℓ
meets the upper bound for
ℓ
=
3
and one-bit away for
ℓ
=
4
. On the other hand, we show that
C
[
ℓ
]
is not unique in attaining
k
ℓ
by constructing an alternate code
C
^
[
ℓ
]
again parameterized by an integer
ℓ
≥
3
with a different low-complexity decoder, yet having the same size
2
k
ℓ
when
3
≤
ℓ
≤
7
. Finally, we also derive new codes by modifying
C
[
ℓ
]
that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal
k
. In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size $$M=2^k$$ M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer $$\ell \ge 3$$ ℓ ≥ 3 , we construct a $$(n=2^\ell , M=2^{k_{\ell }}, d=2)$$ ( n = 2 ℓ , M = 2 k ℓ , d = 2 ) constant weight code $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] of weight $$\ell $$ ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length $$\ell $$ ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k , and that of the decoding algorithm is poly-logarithmic in the input size n , discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] has the maximum size with $$k_{\ell } \ge \ell ^2-\ell \log _2\ell + \log _2\ell - 0.279\ell - 0.721$$ k ℓ ≥ ℓ 2 - ℓ log 2 ℓ + log 2 ℓ - 0.279 ℓ - 0.721 . As k is upper bounded by $$\ell ^2-\ell \log _2\ell +O(\ell )$$ ℓ 2 - ℓ log 2 ℓ + O ( ℓ ) information-theoretically, the code $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] is optimal in its size with respect to two higher order terms of $$\ell $$ ℓ . In particular, $$k_\ell $$ k ℓ meets the upper bound for $$\ell =3$$ ℓ = 3 and one-bit away for $$\ell =4$$ ℓ = 4 . On the other hand, we show that $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] is not unique in attaining $$k_{\ell }$$ k ℓ by constructing an alternate code $$\mathcal{{\hat{C}}}[\ell ]$$ C ^ [ ℓ ] again parameterized by an integer $$\ell \ge 3$$ ℓ ≥ 3 with a different low-complexity decoder, yet having the same size $$2^{k_{\ell }}$$ 2 k ℓ when $$3 \le \ell \le 7$$ 3 ≤ ℓ ≤ 7 . Finally, we also derive new codes by modifying $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k . In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k so that codewords can conveniently be labeled with binary vectors of length k. For every integer ℓ≥3, we construct a (n=2ℓ,M=2kℓ,d=2) constant weight code C[ℓ] of weight ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k, and that of the decoding algorithm is poly-logarithmic in the input size n, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C[ℓ] has the maximum size with kℓ≥ℓ2-ℓlog2ℓ+log2ℓ-0.279ℓ-0.721. As k is upper bounded by ℓ2-ℓlog2ℓ+O(ℓ) information-theoretically, the code C[ℓ] is optimal in its size with respect to two higher order terms of ℓ. In particular, kℓ meets the upper bound for ℓ=3 and one-bit away for ℓ=4. On the other hand, we show that C[ℓ] is not unique in attaining kℓ by constructing an alternate code C^[ℓ] again parameterized by an integer ℓ≥3 with a different low-complexity decoder, yet having the same size 2kℓ when 3≤ℓ≤7. Finally, we also derive new codes by modifying C[ℓ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k. |
| Author | Viterbo, Emanuele Dau, Son Hoang Sasidharan, Birenjith |
| Author_xml | – sequence: 1 givenname: Birenjith orcidid: 0000-0001-7444-7161 surname: Sasidharan fullname: Sasidharan, Birenjith email: birenjith.padmakumarisasidharan@monash.edu organization: ECSE Department, Monash University – sequence: 2 givenname: Emanuele surname: Viterbo fullname: Viterbo, Emanuele organization: ECSE Department, Monash University – sequence: 3 givenname: Son Hoang surname: Dau fullname: Dau, Son Hoang organization: RMIT University |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz9GZZDfJHrX4Dwoi6Dmk2ex2yzZbN1tqv73RFbx5Gh7z3hvmNyOT0AVPyCXCNQKom4gguWDAMwaYFRnTJ2SKuRJM5VpOyBQKnjMEzs_ILMYNAKAAPiWvd02w_ZG6o2sbx2q7o64LcbBhoAff1Osh6dJHemiGNW27A3Pddtf6z2Y4Uh_Srgk1taGkpR_FOTmtbBv9xe-ck_eH-7fFE1u-PD4vbpfMCcwGZp0sISukLdB5kCuLVaZxpVaudE6jlLmvSqVASihEaZ3z2ldYAKJQWigv5uRq7N313cfex8Fsun0f0kkjeJ5nWOi8SC4-ulzfxdj7yuz6Zps-NgjmG50Z0ZmEzvygMzqFxBiKyRxq3_9V_5P6At3uc6Y |
| Cites_doi | 10.1109/TIT.1980.1056141 10.1109/18.370146 10.1109/18.887851 10.1109/TIT.2011.2145490 10.1017/CBO9780511813498 10.1109/PROC.1965.3680 10.1109/18.370117 10.1109/TIT.2009.2021366 10.3390/a15020036 10.1016/j.disc.2007.11.048 10.3390/a14030097 10.1145/360767.360811 10.1109/18.59932 10.1109/TIT.1972.1054832 10.1109/TIT.1962.1057714 10.1109/18.53748 10.1080/00207168508803468 10.1016/S0924-6509(01)80051-9 10.1109/TIT.1973.1054929 10.1090/psapm/010/0113289 10.1109/ICTEL.2003.1191603 10.1109/ISIT.2005.1523371 10.1109/DCC.2003.1194039 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10623-024-01494-8 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1573-7586 |
| EndPage | 4277 |
| ExternalDocumentID | 10_1007_s10623_024_01494_8 |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP200100731; DP200100731 funderid: http://dx.doi.org/10.13039/501100000923 – fundername: Monash University |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ZY4 ~EX AAYXX ABJCF AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c314t-ac6d0496a91ce06ba1f481b7bcdcc81665efd77066093dacce8ef1901137837e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328556700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-1022 |
| IngestDate | Tue Dec 02 10:01:48 EST 2025 Sat Nov 29 02:36:05 EST 2025 Mon Jul 21 06:07:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Enumerative coding 94B15 Nonlinear codes 94B25 94B35 Cyclic-gap code 94A29 Constant weight codes Binary codes 68P30 Low complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-ac6d0496a91ce06ba1f481b7bcdcc81665efd77066093dacce8ef1901137837e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7444-7161 |
| OpenAccessLink | https://link.springer.com/10.1007/s10623-024-01494-8 |
| PQID | 3255419859 |
| PQPubID | 2043752 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_3255419859 crossref_primary_10_1007_s10623_024_01494_8 springer_journals_10_1007_s10623_024_01494_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Designs, codes, and cryptography |
| PublicationTitleAbbrev | Des. Codes Cryptogr |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MacWilliams, Sloane (CR21) 1977 Gallager (CR12) 2008 Bitan, Etzion (CR2) 1995; 41 Kurmaev (CR19) 2011; 57 Kruchinin, Shablya, Kruchinin, Rulevskiy (CR18) 2022; 15 Ding, Fuji-Hara, Fujiwara, Jimbo, Mishima (CR8) 2009; 55 CR17 CR11 Ericson, Zinoviev, Ericson, Zinoviev (CR10) 2001 Schalkwijk (CR27) 1972; 18 CR31 CR30 Cover (CR6) 1973; 19 Johnson (CR15) 1962; 8 Chung, Kumar (CR5) 1990; 36 Slepian (CR29) 1965; 53 Brouwer, Shearer, Sloane, Smith (CR4) 1990; 36 Moreno, Zhang, Kumar, Zinoviev (CR22) 1995; 41 Ruskey, Williams (CR26) 2009; 309 Pascal (CR24) 1887; 25 CR3 Graham, Sloane (CR14) 1980; 26 CR7 Riordan (CR25) 1978 CR28 Er (CR9) 1985; 17 CR23 CR20 Agrell, Vardy, Zeger (CR1) 2000; 46 Genitrini, Pépin (CR13) 2021; 14 Knott (CR16) 1974; 17 AE Brouwer (1494_CR4) 1990; 36 1494_CR31 1494_CR30 D Slepian (1494_CR29) 1965; 53 J Riordan (1494_CR25) 1978 RG Gallager (1494_CR12) 2008 1494_CR3 S Bitan (1494_CR2) 1995; 41 1494_CR7 GD Knott (1494_CR16) 1974; 17 T Cover (1494_CR6) 1973; 19 T Ericson (1494_CR10) 2001 1494_CR17 H Chung (1494_CR5) 1990; 36 R Graham (1494_CR14) 1980; 26 1494_CR11 1494_CR20 MC Er (1494_CR9) 1985; 17 SM Johnson (1494_CR15) 1962; 8 FJ MacWilliams (1494_CR21) 1977 C Ding (1494_CR8) 2009; 55 E Pascal (1494_CR24) 1887; 25 VV Kruchinin (1494_CR18) 2022; 15 O Moreno (1494_CR22) 1995; 41 A Genitrini (1494_CR13) 2021; 14 OF Kurmaev (1494_CR19) 2011; 57 F Ruskey (1494_CR26) 2009; 309 1494_CR28 E Agrell (1494_CR1) 2000; 46 J Schalkwijk (1494_CR27) 1972; 18 1494_CR23 |
| References_xml | – volume: 26 start-page: 37 issue: 1 year: 1980 end-page: 43 ident: CR14 article-title: Lower bounds for constant weight codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1980.1056141 – volume: 41 start-page: 448 issue: 2 year: 1995 end-page: 455 ident: CR22 article-title: New constructions of optimal cyclically permutable constant weight codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.370146 – volume: 25 start-page: 45 year: 1887 end-page: 49 ident: CR24 article-title: Sopra una formula numerica publication-title: G. Di Mat. – volume: 46 start-page: 2373 issue: 7 year: 2000 end-page: 2395 ident: CR1 article-title: Upper bounds for constant-weight codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.887851 – volume: 57 start-page: 4497 issue: 7 year: 2011 end-page: 4515 ident: CR19 article-title: Constant-weight and constant-charge binary run-length limited codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2145490 – ident: CR30 – year: 2008 ident: CR12 publication-title: Principles of Digital Communication doi: 10.1017/CBO9780511813498 – volume: 53 start-page: 228 issue: 3 year: 1965 end-page: 236 ident: CR29 article-title: Permutation modulation publication-title: Proc. IEEE doi: 10.1109/PROC.1965.3680 – volume: 41 start-page: 77 issue: 1 year: 1995 end-page: 87 ident: CR2 article-title: Constructions for optimal constant weight cyclically permutable codes and difference families publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.370117 – volume: 55 start-page: 3297 issue: 7 year: 2009 end-page: 3304 ident: CR8 article-title: Sets of frequency hopping sequences: bounds and optimal constructions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2021366 – volume: 15 start-page: 36 issue: 2 year: 2022 ident: CR18 article-title: Unranking small combinations of a large set in co-lexicographic order publication-title: Algorithms doi: 10.3390/a15020036 – ident: CR23 – volume: 309 start-page: 5305 issue: 17 year: 2009 end-page: 5320 ident: CR26 article-title: The coolest way to generate combinations publication-title: Discret. Math. doi: 10.1016/j.disc.2007.11.048 – year: 1978 ident: CR25 publication-title: An Introduction to Combinatorial Analysis – volume: 14 start-page: 97 issue: 3 year: 2021 ident: CR13 article-title: Lexicographic unranking of combinations revisited publication-title: Algorithms doi: 10.3390/a14030097 – volume: 17 start-page: 45 issue: 1 year: 1974 end-page: 46 ident: CR16 article-title: A numbering systems for combinations publication-title: Commun. ACM doi: 10.1145/360767.360811 – ident: CR3 – ident: CR17 – volume: 36 start-page: 1334 issue: 6 year: 1990 end-page: 1380 ident: CR4 article-title: A new table of constant weight codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.59932 – ident: CR31 – ident: CR11 – volume: 18 start-page: 395 issue: 3 year: 1972 end-page: 399 ident: CR27 article-title: An algorithm for source coding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1972.1054832 – volume: 8 start-page: 203 issue: 3 year: 1962 end-page: 207 ident: CR15 article-title: A new upper bound for error-correcting codes publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057714 – volume: 36 start-page: 866 issue: 4 year: 1990 end-page: 873 ident: CR5 article-title: Optical orthogonal codes—new bounds and an optimal construction publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.53748 – volume: 17 start-page: 277 issue: 1 year: 1985 end-page: 283 ident: CR9 article-title: Lexicographic ordering, ranking and unranking of combinations publication-title: Int. J. Comput. Math. doi: 10.1080/00207168508803468 – ident: CR7 – start-page: 179 year: 2001 end-page: 194 ident: CR10 article-title: Chapter 6–non-symmetric alphabets publication-title: Codes on Euclidean Spheres. North-Holland Mathematical Library doi: 10.1016/S0924-6509(01)80051-9 – ident: CR28 – volume: 19 start-page: 73 issue: 1 year: 1973 end-page: 77 ident: CR6 article-title: Enumerative source encoding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1973.1054929 – year: 1977 ident: CR21 publication-title: The Theory of Error-Correcting Codes – ident: CR20 – ident: 1494_CR11 – ident: 1494_CR20 doi: 10.1090/psapm/010/0113289 – ident: 1494_CR23 doi: 10.1109/ICTEL.2003.1191603 – volume-title: An Introduction to Combinatorial Analysis year: 1978 ident: 1494_CR25 – volume: 25 start-page: 45 year: 1887 ident: 1494_CR24 publication-title: G. Di Mat. – volume: 14 start-page: 97 issue: 3 year: 2021 ident: 1494_CR13 publication-title: Algorithms doi: 10.3390/a14030097 – volume: 41 start-page: 448 issue: 2 year: 1995 ident: 1494_CR22 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.370146 – volume: 55 start-page: 3297 issue: 7 year: 2009 ident: 1494_CR8 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2021366 – volume: 8 start-page: 203 issue: 3 year: 1962 ident: 1494_CR15 publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057714 – volume-title: The Theory of Error-Correcting Codes year: 1977 ident: 1494_CR21 – ident: 1494_CR31 – volume: 53 start-page: 228 issue: 3 year: 1965 ident: 1494_CR29 publication-title: Proc. IEEE doi: 10.1109/PROC.1965.3680 – volume: 309 start-page: 5305 issue: 17 year: 2009 ident: 1494_CR26 publication-title: Discret. Math. doi: 10.1016/j.disc.2007.11.048 – volume: 17 start-page: 45 issue: 1 year: 1974 ident: 1494_CR16 publication-title: Commun. ACM doi: 10.1145/360767.360811 – volume: 57 start-page: 4497 issue: 7 year: 2011 ident: 1494_CR19 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2145490 – volume: 36 start-page: 1334 issue: 6 year: 1990 ident: 1494_CR4 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.59932 – ident: 1494_CR28 doi: 10.1109/ISIT.2005.1523371 – start-page: 179 volume-title: Codes on Euclidean Spheres. North-Holland Mathematical Library year: 2001 ident: 1494_CR10 doi: 10.1016/S0924-6509(01)80051-9 – ident: 1494_CR7 doi: 10.1109/DCC.2003.1194039 – volume: 41 start-page: 77 issue: 1 year: 1995 ident: 1494_CR2 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.370117 – volume: 36 start-page: 866 issue: 4 year: 1990 ident: 1494_CR5 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.53748 – volume: 17 start-page: 277 issue: 1 year: 1985 ident: 1494_CR9 publication-title: Int. J. Comput. Math. doi: 10.1080/00207168508803468 – ident: 1494_CR30 – volume: 19 start-page: 73 issue: 1 year: 1973 ident: 1494_CR6 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1973.1054929 – volume-title: Principles of Digital Communication year: 2008 ident: 1494_CR12 doi: 10.1017/CBO9780511813498 – volume: 15 start-page: 36 issue: 2 year: 2022 ident: 1494_CR18 publication-title: Algorithms doi: 10.3390/a15020036 – ident: 1494_CR17 – volume: 46 start-page: 2373 issue: 7 year: 2000 ident: 1494_CR1 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.887851 – volume: 26 start-page: 37 issue: 1 year: 1980 ident: 1494_CR14 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1980.1056141 – volume: 18 start-page: 395 issue: 3 year: 1972 ident: 1494_CR27 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1972.1054832 – ident: 1494_CR3 |
| SSID | ssj0001302 |
| Score | 2.3693798 |
| Snippet | In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size
M
=
2
k
so... In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size $$M=2^k$$... In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k so... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 4247 |
| SubjectTerms | Algorithms Binomial coefficients Codes Coding Coding and Information Theory Complexity Computer Science Construction Cryptology Decoding Discrete Mathematics in Computer Science Integers Parameter modification Upper bounds |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5g4wAH3ojBQDlwg4g-0jY9IYY2cWEaCKTdqs5J0KSpG2th8O9J0nQFJLhwjCpFVezYn-34M0JnAQBl4I4I96RHqCc5SbknCOcSlBJJx5HcDJuI-n02HMYDm3DL7bPKyiYaQ82noHPkl77CvlRFyEF8NXshemqUrq7aERqrqKmZypSeNzvd_uBhaYt1Wc6w7Xmab9PzbNuMbZ5Trp8oH0V0mEAJ--6aarz5o0RqPE9v67__vI02LebE16WS7KAVke2ijS9MhGp1t6RvzffQfcd06WL4gMkYyHM6w1DiyAIvTC4V61b4HOssLp5MF8S8TBfvCtJjzYypHSJOM465KBf76KnXfby5JXb2AgHfpQVJIeQqeAjT2AXhhKPUlVQh3GgEHEDXGgMheRQpwOLEPk8BBBNSgwvXj1TMK_wD1MimmThEOFIgKQZOJWNAeaDrjLECGiEPfMFSGrfQeXXsyayk2EhqMmUtpEQJKTFCSlgLtauzTux1y5P6oFvoopJW_fn33Y7-3u0YrXtaQczzlTZqFPNXcYLW4K0Y5_NTq2yfZWrbaQ priority: 102 providerName: ProQuest |
| Title | Binary cyclic-gap constant weight codes with low-complexity encoding and decoding |
| URI | https://link.springer.com/article/10.1007/s10623-024-01494-8 https://www.proquest.com/docview/3255419859 |
| Volume | 92 |
| WOSCitedRecordID | wos001328556700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7586 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7586 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-7586 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7586 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001302 issn: 0925-1022 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4I-KAPoqgRRdIH37QJ2zrWPYqBmBgJihriyzKurSEhQBiK_ve2ZQM0-qAvS5otl-X6477r3X0HcOYjMo5OnwpXuZS5StBYuJIKoVAvIlWrKWGbTQTtNu_1wk5aFJZk2e5ZSNKe1GvFbtpUU21TqIH1jPIcFHzDNmN89O7T8vw1oTjLsOcajk3XTUtlfpbx1RytMOa3sKi1Nq3i__5zF3ZSdEkuF8thDzbkqATFrHMDSTdyCbbXaAj16HbJ3Zrsw13DlugS_MDhAOlLPCG4AJEzMrcXqcTUwSfEXOGS4XhObVq6fNd4nhhaTGMNSTwSRMjF4AAeW82Hq2uaNl6g6DlsRmOsC-051OPQQVmr92NHMQ1vgz4KRBNo9KUSQaDRSi30RIwouVQGWTheoB1e6R1CfjQeySMggUZIIQqmOEcmfBNkDDXKqAvfkzxmYRnOM_1HkwW_RrRiUjaajLQmI6vJiJehkk1RlO61JPK0V8SckPta2EU2JavXv0s7_tvnJ7Dlmlm1uSwVyM-mr_IUNvFtNkimVSg0mu3OfRVyNwGtmhTSrn52_OeqXZ2fVVbaqg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RWqlwaPkoYltafKAnsNg4TuIcqqpfCLSwaiUqcQvZsV0hod2FLN3yp_obO-MkbEEqNw49RpEsJfM888bjeQOwlSBqg9FAWuWV1MpbWVrlpLUeCUS-2_U2DJvI-n1zcpJ_nYPfbS8MX6tsfWJw1HaEfEa-GxP31ZQhJ_n78YXkqVFcXW1HaNSw6LnrKaVs1buDz2Tft0rtfTn-tC-bqQIS40hPZImpJVqclnmErpsOyshr4m7ZAC0iV9ES522WUSimZN-WiM44z2EzijPK5lxM6z6Cxzo2Ke-oXiZvPD8XAYO2n2J1T6WaJp2mVY-IhqSIKDkp0dLcDoQzdnunIBvi3N7z_-0PLcGzhlGLD_UWWIY5N1yBxb90Funp6EactlqFbx9DD7LAazw_Q_mjHAusWfJETMNJseBG_0rwGbU4H01luHfvflHCIlj3k8O9KIdWWFc_vIDvD_KFazA_HA3dOoiMKGCOVntjUNuEq6g50ajUJrEzpc47sN2auRjXAiLFTCqaQVEQKIoAisJ0YKO1bdE4k6qYGbYDOy06Zq__vdrL-1fbhKf7x0eHxeFBv_cKFhSDM1zU2YD5yeWVew1P8OfkrLp8E2Au4PShUfMHzls3pQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojxzIEbRFvbtE2PvCYQMPHWblXnJGjSVCZaXv-eJG3ZQHBAHKNWVhU79efY_gyw4yMyjk6XCle5lLlK0ES4kgqhUBuRajaVsMMmwnabdzrR5UgXv612r1KSRU-DYWlK88ZAqMZI45t221T7F2ogPqN8HCaYjmRMUdf1zf3nv9ik5Szbnmv4Nl23bJv5WcZX1zTEm99SpNbztOb-_83zMFuiTrJfmMkCjMl0EeaqiQ6kPOCLMDNCT6hXF5-crtkSXB3Y1l2C79jvIX1IBgQLcJmTV3vBSkx_fEbM1S7pP75SW64u3zTOJ4Yu03hJkqSCCFksluGudXx7eELLgQwUPYflNMFA6IgiSCIHZTPoJo5iGvaGXRSIJgHpSyXCUKOYZuSJBFFyqQzicLxQB8LSW4Fa-pjKVSChRk4RCqY4RyZ8k3yMNPoIhO9JnrCoDruVLuJBwbsRDxmWzU7Geidju5Mxr8NGpa64PINZ7OloiTkR97WwvUo9w8e_S1v72-vbMHV51IrPT9tn6zDtGgXbcpcNqOVPz3ITJvEl72VPW9Y0PwAjbuIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+cyclic-gap+constant+weight+codes+with+low-complexity+encoding+and+decoding&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Sasidharan%2C+Birenjith&rft.au=Viterbo%2C+Emanuele&rft.au=Dau%2C+Son+Hoang&rft.date=2024-12-01&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=92&rft.issue=12&rft.spage=4247&rft.epage=4277&rft_id=info:doi/10.1007%2Fs10623-024-01494-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10623_024_01494_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon |