Binary cyclic-gap constant weight codes with low-complexity encoding and decoding

In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer ℓ ≥ 3 , we construct a ( n = 2 ℓ , M = 2 k ℓ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 92; číslo 12; s. 4247 - 4277
Hlavní autoři: Sasidharan, Birenjith, Viterbo, Emanuele, Dau, Son Hoang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2024
Springer Nature B.V
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer ℓ ≥ 3 , we construct a ( n = 2 ℓ , M = 2 k ℓ , d = 2 ) constant weight code C [ ℓ ] of weight ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k , and that of the decoding algorithm is poly-logarithmic in the input size n , discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C [ ℓ ] has the maximum size with k ℓ ≥ ℓ 2 - ℓ log 2 ℓ + log 2 ℓ - 0.279 ℓ - 0.721 . As k is upper bounded by ℓ 2 - ℓ log 2 ℓ + O ( ℓ ) information-theoretically, the code C [ ℓ ] is optimal in its size with respect to two higher order terms of ℓ . In particular, k ℓ meets the upper bound for ℓ = 3 and one-bit away for ℓ = 4 . On the other hand, we show that C [ ℓ ] is not unique in attaining k ℓ by constructing an alternate code C ^ [ ℓ ] again parameterized by an integer ℓ ≥ 3 with a different low-complexity decoder, yet having the same size 2 k ℓ when 3 ≤ ℓ ≤ 7 . Finally, we also derive new codes by modifying C [ ℓ ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k .
AbstractList In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer ℓ ≥ 3 , we construct a ( n = 2 ℓ , M = 2 k ℓ , d = 2 ) constant weight code C [ ℓ ] of weight ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k , and that of the decoding algorithm is poly-logarithmic in the input size n , discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C [ ℓ ] has the maximum size with k ℓ ≥ ℓ 2 - ℓ log 2 ℓ + log 2 ℓ - 0.279 ℓ - 0.721 . As k is upper bounded by ℓ 2 - ℓ log 2 ℓ + O ( ℓ ) information-theoretically, the code C [ ℓ ] is optimal in its size with respect to two higher order terms of ℓ . In particular, k ℓ meets the upper bound for ℓ = 3 and one-bit away for ℓ = 4 . On the other hand, we show that C [ ℓ ] is not unique in attaining k ℓ by constructing an alternate code C ^ [ ℓ ] again parameterized by an integer ℓ ≥ 3 with a different low-complexity decoder, yet having the same size 2 k ℓ when 3 ≤ ℓ ≤ 7 . Finally, we also derive new codes by modifying C [ ℓ ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k .
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size $$M=2^k$$ M = 2 k so that codewords can conveniently be labeled with binary vectors of length k . For every integer $$\ell \ge 3$$ ℓ ≥ 3 , we construct a $$(n=2^\ell , M=2^{k_{\ell }}, d=2)$$ ( n = 2 ℓ , M = 2 k ℓ , d = 2 ) constant weight code $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] of weight $$\ell $$ ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length $$\ell $$ ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k , and that of the decoding algorithm is poly-logarithmic in the input size n , discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] has the maximum size with $$k_{\ell } \ge \ell ^2-\ell \log _2\ell + \log _2\ell - 0.279\ell - 0.721$$ k ℓ ≥ ℓ 2 - ℓ log 2 ℓ + log 2 ℓ - 0.279 ℓ - 0.721 . As k is upper bounded by $$\ell ^2-\ell \log _2\ell +O(\ell )$$ ℓ 2 - ℓ log 2 ℓ + O ( ℓ ) information-theoretically, the code $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] is optimal in its size with respect to two higher order terms of $$\ell $$ ℓ . In particular, $$k_\ell $$ k ℓ meets the upper bound for $$\ell =3$$ ℓ = 3 and one-bit away for $$\ell =4$$ ℓ = 4 . On the other hand, we show that $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] is not unique in attaining $$k_{\ell }$$ k ℓ by constructing an alternate code $$\mathcal{{\hat{C}}}[\ell ]$$ C ^ [ ℓ ] again parameterized by an integer $$\ell \ge 3$$ ℓ ≥ 3 with a different low-complexity decoder, yet having the same size $$2^{k_{\ell }}$$ 2 k ℓ when $$3 \le \ell \le 7$$ 3 ≤ ℓ ≤ 7 . Finally, we also derive new codes by modifying $${{{\mathcal {C}}}[\ell ]$$ C [ ℓ ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k .
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k so that codewords can conveniently be labeled with binary vectors of length k. For every integer ℓ≥3, we construct a (n=2ℓ,M=2kℓ,d=2) constant weight code C[ℓ] of weight ℓ by encoding information in the gaps between successive 1’s of a vector, and call them as cyclic-gap constant weight codes. The code is associated with a finite integer sequence of length ℓ satisfying a constraint defined as anchor-decodability that is pivotal to ensure low complexity for encoding and decoding. The time complexity of the encoding algorithm is linear in the input size k, and that of the decoding algorithm is poly-logarithmic in the input size n, discounting the linear time spent on parsing the input. Both the algorithms do not require expensive computation of binomial coefficients, unlike the case in many existing schemes. Among codes generated by all anchor-decodable sequences, we show that C[ℓ] has the maximum size with kℓ≥ℓ2-ℓlog2ℓ+log2ℓ-0.279ℓ-0.721. As k is upper bounded by ℓ2-ℓlog2ℓ+O(ℓ) information-theoretically, the code C[ℓ] is optimal in its size with respect to two higher order terms of ℓ. In particular, kℓ meets the upper bound for ℓ=3 and one-bit away for ℓ=4. On the other hand, we show that C[ℓ] is not unique in attaining kℓ by constructing an alternate code C^[ℓ] again parameterized by an integer ℓ≥3 with a different low-complexity decoder, yet having the same size 2kℓ when 3≤ℓ≤7. Finally, we also derive new codes by modifying C[ℓ] that offer a wider range on blocklength and weight while retaining low complexity for encoding and decoding. For certain selected values of parameters, these modified codes too have an optimal k.
Author Viterbo, Emanuele
Dau, Son Hoang
Sasidharan, Birenjith
Author_xml – sequence: 1
  givenname: Birenjith
  orcidid: 0000-0001-7444-7161
  surname: Sasidharan
  fullname: Sasidharan, Birenjith
  email: birenjith.padmakumarisasidharan@monash.edu
  organization: ECSE Department, Monash University
– sequence: 2
  givenname: Emanuele
  surname: Viterbo
  fullname: Viterbo, Emanuele
  organization: ECSE Department, Monash University
– sequence: 3
  givenname: Son Hoang
  surname: Dau
  fullname: Dau, Son Hoang
  organization: RMIT University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz9GZZDfJHrX4Dwoi6Dmk2ex2yzZbN1tqv73RFbx5Gh7z3hvmNyOT0AVPyCXCNQKom4gguWDAMwaYFRnTJ2SKuRJM5VpOyBQKnjMEzs_ILMYNAKAAPiWvd02w_ZG6o2sbx2q7o64LcbBhoAff1Osh6dJHemiGNW27A3Pddtf6z2Y4Uh_Srgk1taGkpR_FOTmtbBv9xe-ck_eH-7fFE1u-PD4vbpfMCcwGZp0sISukLdB5kCuLVaZxpVaudE6jlLmvSqVASihEaZ3z2ldYAKJQWigv5uRq7N313cfex8Fsun0f0kkjeJ5nWOi8SC4-ulzfxdj7yuz6Zps-NgjmG50Z0ZmEzvygMzqFxBiKyRxq3_9V_5P6At3uc6Y
Cites_doi 10.1109/TIT.1980.1056141
10.1109/18.370146
10.1109/18.887851
10.1109/TIT.2011.2145490
10.1017/CBO9780511813498
10.1109/PROC.1965.3680
10.1109/18.370117
10.1109/TIT.2009.2021366
10.3390/a15020036
10.1016/j.disc.2007.11.048
10.3390/a14030097
10.1145/360767.360811
10.1109/18.59932
10.1109/TIT.1972.1054832
10.1109/TIT.1962.1057714
10.1109/18.53748
10.1080/00207168508803468
10.1016/S0924-6509(01)80051-9
10.1109/TIT.1973.1054929
10.1090/psapm/010/0113289
10.1109/ICTEL.2003.1191603
10.1109/ISIT.2005.1523371
10.1109/DCC.2003.1194039
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10623-024-01494-8
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-7586
EndPage 4277
ExternalDocumentID 10_1007_s10623_024_01494_8
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP200100731; DP200100731
  funderid: http://dx.doi.org/10.13039/501100000923
– fundername: Monash University
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAYXX
ABJCF
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c314t-ac6d0496a91ce06ba1f481b7bcdcc81665efd77066093dacce8ef1901137837e3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328556700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-1022
IngestDate Tue Dec 02 10:01:48 EST 2025
Sat Nov 29 02:36:05 EST 2025
Mon Jul 21 06:07:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Enumerative coding
94B15
Nonlinear codes
94B25
94B35
Cyclic-gap code
94A29
Constant weight codes
Binary codes
68P30
Low complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-ac6d0496a91ce06ba1f481b7bcdcc81665efd77066093dacce8ef1901137837e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7444-7161
OpenAccessLink https://link.springer.com/10.1007/s10623-024-01494-8
PQID 3255419859
PQPubID 2043752
PageCount 31
ParticipantIDs proquest_journals_3255419859
crossref_primary_10_1007_s10623_024_01494_8
springer_journals_10_1007_s10623_024_01494_8
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Designs, codes, and cryptography
PublicationTitleAbbrev Des. Codes Cryptogr
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MacWilliams, Sloane (CR21) 1977
Gallager (CR12) 2008
Bitan, Etzion (CR2) 1995; 41
Kurmaev (CR19) 2011; 57
Kruchinin, Shablya, Kruchinin, Rulevskiy (CR18) 2022; 15
Ding, Fuji-Hara, Fujiwara, Jimbo, Mishima (CR8) 2009; 55
CR17
CR11
Ericson, Zinoviev, Ericson, Zinoviev (CR10) 2001
Schalkwijk (CR27) 1972; 18
CR31
CR30
Cover (CR6) 1973; 19
Johnson (CR15) 1962; 8
Chung, Kumar (CR5) 1990; 36
Slepian (CR29) 1965; 53
Brouwer, Shearer, Sloane, Smith (CR4) 1990; 36
Moreno, Zhang, Kumar, Zinoviev (CR22) 1995; 41
Ruskey, Williams (CR26) 2009; 309
Pascal (CR24) 1887; 25
CR3
Graham, Sloane (CR14) 1980; 26
CR7
Riordan (CR25) 1978
CR28
Er (CR9) 1985; 17
CR23
CR20
Agrell, Vardy, Zeger (CR1) 2000; 46
Genitrini, Pépin (CR13) 2021; 14
Knott (CR16) 1974; 17
AE Brouwer (1494_CR4) 1990; 36
1494_CR31
1494_CR30
D Slepian (1494_CR29) 1965; 53
J Riordan (1494_CR25) 1978
RG Gallager (1494_CR12) 2008
1494_CR3
S Bitan (1494_CR2) 1995; 41
1494_CR7
GD Knott (1494_CR16) 1974; 17
T Cover (1494_CR6) 1973; 19
T Ericson (1494_CR10) 2001
1494_CR17
H Chung (1494_CR5) 1990; 36
R Graham (1494_CR14) 1980; 26
1494_CR11
1494_CR20
MC Er (1494_CR9) 1985; 17
SM Johnson (1494_CR15) 1962; 8
FJ MacWilliams (1494_CR21) 1977
C Ding (1494_CR8) 2009; 55
E Pascal (1494_CR24) 1887; 25
VV Kruchinin (1494_CR18) 2022; 15
O Moreno (1494_CR22) 1995; 41
A Genitrini (1494_CR13) 2021; 14
OF Kurmaev (1494_CR19) 2011; 57
F Ruskey (1494_CR26) 2009; 309
1494_CR28
E Agrell (1494_CR1) 2000; 46
J Schalkwijk (1494_CR27) 1972; 18
1494_CR23
References_xml – volume: 26
  start-page: 37
  issue: 1
  year: 1980
  end-page: 43
  ident: CR14
  article-title: Lower bounds for constant weight codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1980.1056141
– volume: 41
  start-page: 448
  issue: 2
  year: 1995
  end-page: 455
  ident: CR22
  article-title: New constructions of optimal cyclically permutable constant weight codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.370146
– volume: 25
  start-page: 45
  year: 1887
  end-page: 49
  ident: CR24
  article-title: Sopra una formula numerica
  publication-title: G. Di Mat.
– volume: 46
  start-page: 2373
  issue: 7
  year: 2000
  end-page: 2395
  ident: CR1
  article-title: Upper bounds for constant-weight codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.887851
– volume: 57
  start-page: 4497
  issue: 7
  year: 2011
  end-page: 4515
  ident: CR19
  article-title: Constant-weight and constant-charge binary run-length limited codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2145490
– ident: CR30
– year: 2008
  ident: CR12
  publication-title: Principles of Digital Communication
  doi: 10.1017/CBO9780511813498
– volume: 53
  start-page: 228
  issue: 3
  year: 1965
  end-page: 236
  ident: CR29
  article-title: Permutation modulation
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1965.3680
– volume: 41
  start-page: 77
  issue: 1
  year: 1995
  end-page: 87
  ident: CR2
  article-title: Constructions for optimal constant weight cyclically permutable codes and difference families
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.370117
– volume: 55
  start-page: 3297
  issue: 7
  year: 2009
  end-page: 3304
  ident: CR8
  article-title: Sets of frequency hopping sequences: bounds and optimal constructions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2021366
– volume: 15
  start-page: 36
  issue: 2
  year: 2022
  ident: CR18
  article-title: Unranking small combinations of a large set in co-lexicographic order
  publication-title: Algorithms
  doi: 10.3390/a15020036
– ident: CR23
– volume: 309
  start-page: 5305
  issue: 17
  year: 2009
  end-page: 5320
  ident: CR26
  article-title: The coolest way to generate combinations
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2007.11.048
– year: 1978
  ident: CR25
  publication-title: An Introduction to Combinatorial Analysis
– volume: 14
  start-page: 97
  issue: 3
  year: 2021
  ident: CR13
  article-title: Lexicographic unranking of combinations revisited
  publication-title: Algorithms
  doi: 10.3390/a14030097
– volume: 17
  start-page: 45
  issue: 1
  year: 1974
  end-page: 46
  ident: CR16
  article-title: A numbering systems for combinations
  publication-title: Commun. ACM
  doi: 10.1145/360767.360811
– ident: CR3
– ident: CR17
– volume: 36
  start-page: 1334
  issue: 6
  year: 1990
  end-page: 1380
  ident: CR4
  article-title: A new table of constant weight codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.59932
– ident: CR31
– ident: CR11
– volume: 18
  start-page: 395
  issue: 3
  year: 1972
  end-page: 399
  ident: CR27
  article-title: An algorithm for source coding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054832
– volume: 8
  start-page: 203
  issue: 3
  year: 1962
  end-page: 207
  ident: CR15
  article-title: A new upper bound for error-correcting codes
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057714
– volume: 36
  start-page: 866
  issue: 4
  year: 1990
  end-page: 873
  ident: CR5
  article-title: Optical orthogonal codes—new bounds and an optimal construction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.53748
– volume: 17
  start-page: 277
  issue: 1
  year: 1985
  end-page: 283
  ident: CR9
  article-title: Lexicographic ordering, ranking and unranking of combinations
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207168508803468
– ident: CR7
– start-page: 179
  year: 2001
  end-page: 194
  ident: CR10
  article-title: Chapter 6–non-symmetric alphabets
  publication-title: Codes on Euclidean Spheres. North-Holland Mathematical Library
  doi: 10.1016/S0924-6509(01)80051-9
– ident: CR28
– volume: 19
  start-page: 73
  issue: 1
  year: 1973
  end-page: 77
  ident: CR6
  article-title: Enumerative source encoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1973.1054929
– year: 1977
  ident: CR21
  publication-title: The Theory of Error-Correcting Codes
– ident: CR20
– ident: 1494_CR11
– ident: 1494_CR20
  doi: 10.1090/psapm/010/0113289
– ident: 1494_CR23
  doi: 10.1109/ICTEL.2003.1191603
– volume-title: An Introduction to Combinatorial Analysis
  year: 1978
  ident: 1494_CR25
– volume: 25
  start-page: 45
  year: 1887
  ident: 1494_CR24
  publication-title: G. Di Mat.
– volume: 14
  start-page: 97
  issue: 3
  year: 2021
  ident: 1494_CR13
  publication-title: Algorithms
  doi: 10.3390/a14030097
– volume: 41
  start-page: 448
  issue: 2
  year: 1995
  ident: 1494_CR22
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.370146
– volume: 55
  start-page: 3297
  issue: 7
  year: 2009
  ident: 1494_CR8
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2021366
– volume: 8
  start-page: 203
  issue: 3
  year: 1962
  ident: 1494_CR15
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057714
– volume-title: The Theory of Error-Correcting Codes
  year: 1977
  ident: 1494_CR21
– ident: 1494_CR31
– volume: 53
  start-page: 228
  issue: 3
  year: 1965
  ident: 1494_CR29
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1965.3680
– volume: 309
  start-page: 5305
  issue: 17
  year: 2009
  ident: 1494_CR26
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2007.11.048
– volume: 17
  start-page: 45
  issue: 1
  year: 1974
  ident: 1494_CR16
  publication-title: Commun. ACM
  doi: 10.1145/360767.360811
– volume: 57
  start-page: 4497
  issue: 7
  year: 2011
  ident: 1494_CR19
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2145490
– volume: 36
  start-page: 1334
  issue: 6
  year: 1990
  ident: 1494_CR4
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.59932
– ident: 1494_CR28
  doi: 10.1109/ISIT.2005.1523371
– start-page: 179
  volume-title: Codes on Euclidean Spheres. North-Holland Mathematical Library
  year: 2001
  ident: 1494_CR10
  doi: 10.1016/S0924-6509(01)80051-9
– ident: 1494_CR7
  doi: 10.1109/DCC.2003.1194039
– volume: 41
  start-page: 77
  issue: 1
  year: 1995
  ident: 1494_CR2
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.370117
– volume: 36
  start-page: 866
  issue: 4
  year: 1990
  ident: 1494_CR5
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.53748
– volume: 17
  start-page: 277
  issue: 1
  year: 1985
  ident: 1494_CR9
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207168508803468
– ident: 1494_CR30
– volume: 19
  start-page: 73
  issue: 1
  year: 1973
  ident: 1494_CR6
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1973.1054929
– volume-title: Principles of Digital Communication
  year: 2008
  ident: 1494_CR12
  doi: 10.1017/CBO9780511813498
– volume: 15
  start-page: 36
  issue: 2
  year: 2022
  ident: 1494_CR18
  publication-title: Algorithms
  doi: 10.3390/a15020036
– ident: 1494_CR17
– volume: 46
  start-page: 2373
  issue: 7
  year: 2000
  ident: 1494_CR1
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.887851
– volume: 26
  start-page: 37
  issue: 1
  year: 1980
  ident: 1494_CR14
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1980.1056141
– volume: 18
  start-page: 395
  issue: 3
  year: 1972
  ident: 1494_CR27
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054832
– ident: 1494_CR3
SSID ssj0001302
Score 2.3693798
Snippet In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M = 2 k so...
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size $$M=2^k$$...
In this paper, we focus on the design of binary constant weight codes that admit low-complexity encoding and decoding algorithms, and that have size M=2k so...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4247
SubjectTerms Algorithms
Binomial coefficients
Codes
Coding
Coding and Information Theory
Complexity
Computer Science
Construction
Cryptology
Decoding
Discrete Mathematics in Computer Science
Integers
Parameter modification
Upper bounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5g4wAH3ojBQDlwg4g-0jY9IYY2cWEaCKTdqs5J0KSpG2th8O9J0nQFJLhwjCpFVezYn-34M0JnAQBl4I4I96RHqCc5SbknCOcSlBJJx5HcDJuI-n02HMYDm3DL7bPKyiYaQ82noHPkl77CvlRFyEF8NXshemqUrq7aERqrqKmZypSeNzvd_uBhaYt1Wc6w7Xmab9PzbNuMbZ5Trp8oH0V0mEAJ--6aarz5o0RqPE9v67__vI02LebE16WS7KAVke2ijS9MhGp1t6RvzffQfcd06WL4gMkYyHM6w1DiyAIvTC4V61b4HOssLp5MF8S8TBfvCtJjzYypHSJOM465KBf76KnXfby5JXb2AgHfpQVJIeQqeAjT2AXhhKPUlVQh3GgEHEDXGgMheRQpwOLEPk8BBBNSgwvXj1TMK_wD1MimmThEOFIgKQZOJWNAeaDrjLECGiEPfMFSGrfQeXXsyayk2EhqMmUtpEQJKTFCSlgLtauzTux1y5P6oFvoopJW_fn33Y7-3u0YrXtaQczzlTZqFPNXcYLW4K0Y5_NTq2yfZWrbaQ
  priority: 102
  providerName: ProQuest
Title Binary cyclic-gap constant weight codes with low-complexity encoding and decoding
URI https://link.springer.com/article/10.1007/s10623-024-01494-8
https://www.proquest.com/docview/3255419859
Volume 92
WOSCitedRecordID wos001328556700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4I-KAPoqgRRdIH37QJ2zrWPYqBmBgJihriyzKurSEhQBiK_ve2ZQM0-qAvS5otl-X6477r3X0HcOYjMo5OnwpXuZS5StBYuJIKoVAvIlWrKWGbTQTtNu_1wk5aFJZk2e5ZSNKe1GvFbtpUU21TqIH1jPIcFHzDNmN89O7T8vw1oTjLsOcajk3XTUtlfpbx1RytMOa3sKi1Nq3i__5zF3ZSdEkuF8thDzbkqATFrHMDSTdyCbbXaAj16HbJ3Zrsw13DlugS_MDhAOlLPCG4AJEzMrcXqcTUwSfEXOGS4XhObVq6fNd4nhhaTGMNSTwSRMjF4AAeW82Hq2uaNl6g6DlsRmOsC-051OPQQVmr92NHMQ1vgz4KRBNo9KUSQaDRSi30RIwouVQGWTheoB1e6R1CfjQeySMggUZIIQqmOEcmfBNkDDXKqAvfkzxmYRnOM_1HkwW_RrRiUjaajLQmI6vJiJehkk1RlO61JPK0V8SckPta2EU2JavXv0s7_tvnJ7Dlmlm1uSwVyM-mr_IUNvFtNkimVSg0mu3OfRVyNwGtmhTSrn52_OeqXZ2fVVbaqg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RWqlwaPkoYltafKAnsNg4TuIcqqpfCLSwaiUqcQvZsV0hod2FLN3yp_obO-MkbEEqNw49RpEsJfM888bjeQOwlSBqg9FAWuWV1MpbWVrlpLUeCUS-2_U2DJvI-n1zcpJ_nYPfbS8MX6tsfWJw1HaEfEa-GxP31ZQhJ_n78YXkqVFcXW1HaNSw6LnrKaVs1buDz2Tft0rtfTn-tC-bqQIS40hPZImpJVqclnmErpsOyshr4m7ZAC0iV9ES522WUSimZN-WiM44z2EzijPK5lxM6z6Cxzo2Ke-oXiZvPD8XAYO2n2J1T6WaJp2mVY-IhqSIKDkp0dLcDoQzdnunIBvi3N7z_-0PLcGzhlGLD_UWWIY5N1yBxb90Funp6EactlqFbx9DD7LAazw_Q_mjHAusWfJETMNJseBG_0rwGbU4H01luHfvflHCIlj3k8O9KIdWWFc_vIDvD_KFazA_HA3dOoiMKGCOVntjUNuEq6g50ajUJrEzpc47sN2auRjXAiLFTCqaQVEQKIoAisJ0YKO1bdE4k6qYGbYDOy06Zq__vdrL-1fbhKf7x0eHxeFBv_cKFhSDM1zU2YD5yeWVew1P8OfkrLp8E2Au4PShUfMHzls3pQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojxzIEbRFvbtE2PvCYQMPHWblXnJGjSVCZaXv-eJG3ZQHBAHKNWVhU79efY_gyw4yMyjk6XCle5lLlK0ES4kgqhUBuRajaVsMMmwnabdzrR5UgXv612r1KSRU-DYWlK88ZAqMZI45t221T7F2ogPqN8HCaYjmRMUdf1zf3nv9ik5Szbnmv4Nl23bJv5WcZX1zTEm99SpNbztOb-_83zMFuiTrJfmMkCjMl0EeaqiQ6kPOCLMDNCT6hXF5-crtkSXB3Y1l2C79jvIX1IBgQLcJmTV3vBSkx_fEbM1S7pP75SW64u3zTOJ4Yu03hJkqSCCFksluGudXx7eELLgQwUPYflNMFA6IgiSCIHZTPoJo5iGvaGXRSIJgHpSyXCUKOYZuSJBFFyqQzicLxQB8LSW4Fa-pjKVSChRk4RCqY4RyZ8k3yMNPoIhO9JnrCoDruVLuJBwbsRDxmWzU7Geidju5Mxr8NGpa64PINZ7OloiTkR97WwvUo9w8e_S1v72-vbMHV51IrPT9tn6zDtGgXbcpcNqOVPz3ITJvEl72VPW9Y0PwAjbuIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+cyclic-gap+constant+weight+codes+with+low-complexity+encoding+and+decoding&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Sasidharan%2C+Birenjith&rft.au=Viterbo%2C+Emanuele&rft.au=Dau%2C+Son+Hoang&rft.date=2024-12-01&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=92&rft.issue=12&rft.spage=4247&rft.epage=4277&rft_id=info:doi/10.1007%2Fs10623-024-01494-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10623_024_01494_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon