Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation

Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer vision Ročník 133; číslo 7; s. 4294 - 4316
Hlavní autori: Mittal, Sudhanshu, Niemeijer, Joshua, Çiçek, Özgün, Tatarchenko, Maxim, Ehrhardt, Jan, Schäfer, Jörg P., Handels, Heinz, Brox, Thomas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2025
Springer Nature B.V
Predmet:
ISSN:0920-5691, 1573-1405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.
AbstractList Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most informative samples. Recently, deep active learning has shown success on various tasks. However, the conventional evaluation schemes are either incomplete or below par. This study critically assesses various active learning approaches, identifying key factors essential for choosing the most effective active learning method. It includes a comprehensive guide to obtain the best performance for each case, in image classification and semantic segmentation. For image classification, the AL methods improve by a large-margin when integrated with data augmentation and semi-supervised learning, but barely perform better than the random baseline. In this work, we evaluate them under more realistic settings and propose a more suitable evaluation protocol. For semantic segmentation, previous academic studies focused on diverse datasets with substantial annotation resources. In contrast, data collected in many driving scenarios is highly redundant, and most medical applications are subject to very constrained annotation budgets. The study evaluates active learning techniques under various conditions including data redundancy, the use of semi-supervised learning, and differing annotation budgets. As an outcome of our study, we provide a comprehensive usage guide to obtain the best performance for each case.
Author Brox, Thomas
Çiçek, Özgün
Ehrhardt, Jan
Handels, Heinz
Mittal, Sudhanshu
Tatarchenko, Maxim
Niemeijer, Joshua
Schäfer, Jörg P.
Author_xml – sequence: 1
  givenname: Sudhanshu
  orcidid: 0000-0002-7809-8058
  surname: Mittal
  fullname: Mittal, Sudhanshu
  email: mittal@cs.uni-freiburg.de
  organization: University of Freiburg
– sequence: 2
  givenname: Joshua
  surname: Niemeijer
  fullname: Niemeijer, Joshua
  email: Joshua.Niemeijer@dlr.de
  organization: German Aerospace Center (DLR), University of Luebeck
– sequence: 3
  givenname: Özgün
  surname: Çiçek
  fullname: Çiçek, Özgün
  organization: Robert Bosch GmbH
– sequence: 4
  givenname: Maxim
  surname: Tatarchenko
  fullname: Tatarchenko, Maxim
  organization: Robert Bosch GmbH
– sequence: 5
  givenname: Jan
  surname: Ehrhardt
  fullname: Ehrhardt, Jan
  organization: University of Luebeck
– sequence: 6
  givenname: Jörg P.
  surname: Schäfer
  fullname: Schäfer, Jörg P.
  organization: German Aerospace Center (DLR)
– sequence: 7
  givenname: Heinz
  surname: Handels
  fullname: Handels, Heinz
  organization: University of Luebeck
– sequence: 8
  givenname: Thomas
  surname: Brox
  fullname: Brox, Thomas
  organization: University of Freiburg
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uZZHeTPZZaP6AgWD2HbDq7pGyzNdkW7K932xW8eRjmMO_zDjwTMvKtR0Jugd0DY_IhAvBcJIxn_QjJk-MFGUMmRQIpy0ZkzArOkiwv4IpMYtwwxrjiYkz0O5rGxc5ZujiYZm8613raVvQRcUdntnMHpEs0wTtf06oN9HVraqTzxsToKmcHwPg1XeHW-FPRCust-u58uSaXlWki3vzuKfl8WnzMX5Ll2_PrfLZMrIC0SwyTygAIwDwtOZcCVK6UQFsiY6XNVZEWkqUmFUIUVZlLsNLYNa9EmSlTVmJK7obeXWi_9hg7vWn3wfcvteCQZwoKJfsUH1I2tDEGrPQuuK0J3xqYPonUg0jdi9RnkfrYQ2KAYh_2NYa_6n-oH3ZMeC0
Cites_doi 10.1007/s11263-009-0275-4
10.1007/978-3-030-58586-0_40
10.1109/CVPR.2019.00018
10.1109/CVPR46437.2021.01084
10.1109/TPAMI.2019.2960224
10.1145/3472291
10.1109/TNNLS.2024.3396463
10.1007/978-3-030-01234-2_49
10.1109/ISBI.2018.8363547
10.1109/CVPR.2009.5206848
10.1109/ICCVW54120.2021.00194
10.1109/ICCV.2011.6126343
10.1109/CVPR.2016.350
10.1109/TCSVT.2016.2589879
10.1002/j.1538-7305.1948.tb01338.x
10.1007/978-3-030-58607-2_30
10.1016/j.patrec.2008.04.005
10.1109/ICCV.2019.00607
10.1109/MSP.2012.2211477
10.1093/bioinformatics/btz083
10.7551/mitpress/9780262033589.001.0001
10.1109/BIBM.2016.7822557
10.2307/2575887
10.1109/CVPR52688.2022.00421
10.1109/ICRA.2014.6907021
10.48550/ARXIV.2210.08403
10.1109/CVPR.2019.00020
10.1109/CVPR52688.2022.00032
10.1609/aaai.v35i9.16988
10.5244/C.30.87
10.1145/130385.130417
10.1109/CVPR.2018.00976
10.1016/j.patcog.2019.01.006
10.1109/TPAMI.2017.2699184
10.1109/CVPR46437.2021.00807
10.1007/978-3-319-66179-7_46
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jul 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11263-025-02372-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 4316
ExternalDocumentID 10_1007_s11263_025_02372_z
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Bundesministerium für Wirtschaft und Klimaschutz
  funderid: http://dx.doi.org/10.13039/100021130
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
ICD
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PMFND
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c314t-a078a1131e64b2273186883ecbe00bc68949704a43339fb671c7acd2f3b58abf3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001434110600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 08:00:02 EST 2025
Sat Nov 29 07:49:47 EST 2025
Sun Jun 08 01:10:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Segmentation
Active learning
Semi supervised learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-a078a1131e64b2273186883ecbe00bc68949704a43339fb671c7acd2f3b58abf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7809-8058
OpenAccessLink https://link.springer.com/10.1007/s11263-025-02372-z
PQID 3216581987
PQPubID 1456341
PageCount 23
ParticipantIDs proquest_journals_3216581987
crossref_primary_10_1007_s11263_025_02372_z
springer_journals_10_1007_s11263_025_02372_z
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Everingham (2372_CR16) 2010; 88
M Amgad (2372_CR1) 2019; 35
2372_CR17
2372_CR58
2372_CR13
2372_CR57
2372_CR15
2372_CR59
2372_CR10
2372_CR54
2372_CR53
2372_CR12
2372_CR56
O Chapelle (2372_CR7) 2006
2372_CR11
2372_CR55
2372_CR50
2372_CR52
2372_CR51
Y Gal (2372_CR18) 2016; 48
2372_CR29
2372_CR28
2372_CR25
2372_CR24
Y Gal (2372_CR19) 2017; 70
2372_CR27
2372_CR26
2372_CR21
2372_CR20
2372_CR23
2372_CR22
2372_CR61
2372_CR60
CE Shannon (2372_CR45) 1948; 27
2372_CR62
2372_CR39
2372_CR36
S Mittal (2372_CR34) 2019; 43
2372_CR35
C Blundell (2372_CR4) 2015; 37
2372_CR38
2372_CR37
2372_CR31
2372_CR33
D Li (2372_CR32) 2024
GJ Brostow (2372_CR5) 2008; 30
2372_CR30
2372_CR8
2372_CR6
2372_CR3
2372_CR2
L Chen (2372_CR9) 2018; 40
2372_CR47
2372_CR46
2372_CR49
P Ren (2372_CR42) 2021; 54
2372_CR48
2372_CR43
2372_CR44
2372_CR41
2372_CR40
L Deng (2372_CR14) 2012; 29
References_xml – volume: 88
  start-page: 303
  year: 2010
  ident: 2372_CR16
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 2372_CR47
– ident: 2372_CR24
– ident: 2372_CR30
– ident: 2372_CR50
  doi: 10.1007/978-3-030-58586-0_40
– ident: 2372_CR57
  doi: 10.1109/CVPR.2019.00018
– ident: 2372_CR6
  doi: 10.1109/CVPR46437.2021.01084
– ident: 2372_CR37
– volume: 43
  start-page: 1369
  issue: 4
  year: 2019
  ident: 2372_CR34
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2960224
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 2372_CR42
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3472291
– volume: 37
  start-page: 1613
  year: 2015
  ident: 2372_CR4
  publication-title: International Conference on Machine Learning
– year: 2024
  ident: 2372_CR32
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2024.3396463
– ident: 2372_CR8
  doi: 10.1007/978-3-030-01234-2_49
– volume: 70
  start-page: 1183
  year: 2017
  ident: 2372_CR19
  publication-title: International Conference on Machine Learning
– ident: 2372_CR10
  doi: 10.1109/ISBI.2018.8363547
– ident: 2372_CR27
– ident: 2372_CR13
  doi: 10.1109/CVPR.2009.5206848
– ident: 2372_CR46
  doi: 10.1109/ICCVW54120.2021.00194
– ident: 2372_CR23
  doi: 10.1109/ICCV.2011.6126343
– ident: 2372_CR15
– ident: 2372_CR58
– ident: 2372_CR11
  doi: 10.1109/CVPR.2016.350
– ident: 2372_CR60
– ident: 2372_CR33
– ident: 2372_CR52
  doi: 10.1109/TCSVT.2016.2589879
– volume: 27
  start-page: 379
  year: 1948
  ident: 2372_CR45
  publication-title: The Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 2372_CR20
  doi: 10.1007/978-3-030-58607-2_30
– ident: 2372_CR43
– volume: 30
  start-page: 88
  year: 2008
  ident: 2372_CR5
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.04.005
– volume: 48
  start-page: 1050
  year: 2016
  ident: 2372_CR18
  publication-title: International Conference on Machine Learning
– ident: 2372_CR49
  doi: 10.1109/ICCV.2019.00607
– ident: 2372_CR22
– volume: 29
  start-page: 141
  year: 2012
  ident: 2372_CR14
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2211477
– volume: 35
  start-page: 3461
  issue: 18
  year: 2019
  ident: 2372_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz083
– volume-title: Semi-supervised learning
  year: 2006
  ident: 2372_CR7
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: 2372_CR61
  doi: 10.1109/BIBM.2016.7822557
– ident: 2372_CR2
– ident: 2372_CR26
  doi: 10.2307/2575887
– ident: 2372_CR51
  doi: 10.1109/CVPR52688.2022.00421
– ident: 2372_CR55
– ident: 2372_CR39
  doi: 10.1109/ICRA.2014.6907021
– ident: 2372_CR36
– ident: 2372_CR40
  doi: 10.48550/ARXIV.2210.08403
– ident: 2372_CR12
  doi: 10.1109/CVPR.2019.00020
– ident: 2372_CR35
  doi: 10.1109/CVPR52688.2022.00032
– ident: 2372_CR48
– ident: 2372_CR28
  doi: 10.1609/aaai.v35i9.16988
– ident: 2372_CR25
– ident: 2372_CR59
  doi: 10.5244/C.30.87
– ident: 2372_CR21
– ident: 2372_CR44
  doi: 10.1145/130385.130417
– ident: 2372_CR17
– ident: 2372_CR38
– ident: 2372_CR53
  doi: 10.1109/TCSVT.2016.2589879
– ident: 2372_CR3
  doi: 10.1109/CVPR.2018.00976
– ident: 2372_CR54
  doi: 10.1016/j.patcog.2019.01.006
– ident: 2372_CR31
– ident: 2372_CR41
– ident: 2372_CR62
– volume: 40
  start-page: 834
  year: 2018
  ident: 2372_CR9
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2017.2699184
– ident: 2372_CR29
  doi: 10.1109/CVPR46437.2021.00807
– ident: 2372_CR56
  doi: 10.1007/978-3-319-66179-7_46
SSID ssj0002823
Score 2.4858696
Snippet Active learning aims to reduce the high labeling cost involved in training machine learning models on large datasets by efficiently labeling only the most...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4294
SubjectTerms Artificial Intelligence
Budgets
Computer Imaging
Computer Science
Data augmentation
Datasets
German Conference on Pattern Recognition special issues (GCPR)
Image annotation
Image classification
Image Processing and Computer Vision
Image segmentation
Labeling
Machine learning
Pattern Recognition
Pattern Recognition and Graphics
Redundancy
Semantic segmentation
Semantics
Semi-supervised learning
Vision
Title Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation
URI https://link.springer.com/article/10.1007/s11263-025-02372-z
https://www.proquest.com/docview/3216581987
Volume 133
WOSCitedRecordID wos001434110600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iBTbedhjBa1AQhVqoeoW2Y5TMTSt2sLQX8_FcRqBYIDViZ3IZ9999t19h9C14iL1dRh6ErCoF4DJ8IRWyqM85RkNU03sne7oKe73-Xgsnl1S2LKKdq9cklZT18luhFqfY5FRzGLqrbfRDpg7XmzHwXC00b9wiCgLyMPBKIwEcakyP4_x1RzVGPObW9Ram17zf_95gPYdusSdcjkcoi2TH6GmQ5rY7eMlNFXFHKq2Y5QMTMGFCB1xd8MAjmcZvjdmjjtWLWLHxjrBAHXx4xR0EbZVNYt4o7KDzOE7ZgrygoGGZjJ1uU35CXrtdV_uHjxXfcHTjAQrTwJ4kIQwYqJAUUA5BbE-Z0Yr4_tKR1wEIvYDGTDGRKaimOhY6pRmTIVcqoydokY-y80Zwr4WGlas4qlgoJilFBmhhqpIKBrHadZCN5UQknlJspHUdMrFdCYwnYmdzmTdQu1KTonbcMuEUQJYqrhBaaHbSi71499HO__b6xdoj1rRFgG7bdRYLd7NJdrVH6u35eLKLsRPm3HYvg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BQYKFN6JQwAMbRIrtvDxWPASiVKg8xGbZjlMxNK1oYeDXc3EdKhAMsDqxE92d7z77XgBHOhN5aOI4UIhFgwhNRiCM1gHL8qxgcW6ou9N97KTdbvb0JG59Uti4jnavXZJOU8-S3ShzPscqo5inLHifh4UILVYVyNe7e_zUv3iImDaQx4NRnAjqU2V-XuOrOZphzG9uUWdtLlb_959rsOLRJWlPxWEd5my5AaseaRK_j8c4VDdzqMc2QfZsVQsRJ5LzzwrgZFiQM2tHpO3UIvHVWPsEoS65GqAuIq6rZhVvNJ2gSvyOHSC_cKE72x_43KZyCx4uzu9PLwPffSEwnEaTQCF4UJRyapNIM0Q5VWH9jFujbRhqk2QiEmkYqYhzLgqdpNSkyuSs4DrOlC74NjTKYWl3gIRGGJRYneWCo2JWShSUWaYToVma5kUTjmsmyNG0yIaclVOuyCmRnNKRU743oVXzSfoNN5acUcRS1Q1KE05qvswe_77a7t9eP4Sly_ubjuxcda_3YJk5NlfBuy1oTF5e7T4smrfJ8_jlwAnlB81i26I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xEmKhPEV5emCDiNjOy2MFVCBQhXiJzbIdp2JoqGhh4NdzdhIKCAbE6sSXyGffffb5vgPY15nIQxPHgUIsGkToMgJhtA5YlmcFi3ND_Znu_WXa62UPD-LqUxa_v-3ehCSrnAbH0lSOj4Z5cTRJfKPMxx9ddjFPWfA2DbORKxrk9us39x-2GDcUVTF53CTFiaB12szPMr66pgne_BYi9Z6n2_r_Py_BYo06SaeaJsswZcsVaNUIlNTre4RNTZGHpm0V5LV1HInYkZx-MIOTp4KcWDskHW8uSc3S2icIgcn5AG0U8dU23T2kqoMq8Tt2gHpEQTe2P6hznso1uOue3h6fBXVVhsBwGo0DhaBCUcqpTSLNEP04wv2MW6NtGGqTZCISaRipiHMuCp2k1KTK5KzgOs6ULvg6zJRPpd0AEhphcCbrLBccDbZSoqDMMp0IzdI0L9pw0ChEDivyDTmhWXbDKXE4pR9O-daG7UZnsl6II8kZRYzlTlbacNjoaPL4d2mbf3t9D-avTrry8rx3sQULzGvZ3endhpnx84vdgTnzOn4cPe_6-fkOl4zkhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+Evaluation+of+Deep+Active+Learning+for+Image+Classification+and+Semantic+Segmentation&rft.jtitle=International+journal+of+computer+vision&rft.au=Mittal%2C+Sudhanshu&rft.au=Niemeijer%2C+Joshua&rft.au=%C3%87i%C3%A7ek%2C+%C3%96zg%C3%BCn&rft.au=Tatarchenko%2C+Maxim&rft.date=2025-07-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=133&rft.issue=7&rft.spage=4294&rft.epage=4316&rft_id=info:doi/10.1007%2Fs11263-025-02372-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_025_02372_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon