Euclidean TSP in Narrow Strips

We investigate how the complexity of Euclidean TSP for point sets P inside the strip ( - ∞ , + ∞ ) × [ 0 , δ ] depends on the strip width  δ . We obtain two main results. For the case where the points have distinct integer x -coordinates, we prove that a shortest bitonic tour (which can be computed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete & computational geometry Ročník 71; číslo 4; s. 1456 - 1506
Hlavní autori: Alkema, Henk, de Berg, Mark, van der Hofstad, Remco, Kisfaludi-Bak, Sándor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2024
Springer Nature B.V
Predmet:
ISSN:0179-5376, 1432-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We investigate how the complexity of Euclidean TSP for point sets P inside the strip ( - ∞ , + ∞ ) × [ 0 , δ ] depends on the strip width  δ . We obtain two main results. For the case where the points have distinct integer x -coordinates, we prove that a shortest bitonic tour (which can be computed in O ( n log 2 n ) time using an existing algorithm) is guaranteed to be a shortest tour overall when δ ⩽ 2 2 , a bound which is best possible. We present an algorithm that is fixed-parameter tractable with respect to  δ . Our algorithm has running time 2 O ( δ ) n + O ( δ 2 n 2 ) for sparse point sets, where each 1 × δ rectangle inside the strip contains O (1) points. For random point sets, where the points are chosen uniformly at random from the rectangle  [ 0 , n ] × [ 0 , δ ] , it has an expected running time of 2 O ( δ ) n . These results generalise to point sets P inside a hypercylinder of width δ . In this case, the factors 2 O ( δ ) become 2 O ( δ 1 - 1 / d ) .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-023-00609-7