Contaminant transport in wetland flows over bottom-layer absorption subject to wind effect
Ecological decomposition and bottom-layer absorption are omnipresent and greatly influence pollutant mass transport in natural and modeled wetland flows. In addition, it considers the force of wind that blows on the wetland’s surface. The present work analytically explores the two-dimensional and lo...
Uloženo v:
| Vydáno v: | Modeling earth systems and environment Ročník 11; číslo 2; s. 91 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.04.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2363-6203, 2363-6211 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ecological decomposition and bottom-layer absorption are omnipresent and greatly influence pollutant mass transport in natural and modeled wetland flows. In addition, it considers the force of wind that blows on the wetland’s surface. The present work analytically explores the two-dimensional and longitudinal mean concentrations under the effects of ecological decomposition, bottom-layer absorption, and wind drag force based on Mei’s homogenization technique up to third-order approximation. The flow velocity is computed from the basic momentum equation under the free-surface wind effect to understand the mechanism behind the pollutant mass transport in wetland flows. Also, from the results it seems that as wind intensity increases, it typically exerts a greater force on the fluid, enhancing the downstream flow velocity. As an extension of the Taylor dispersion model, Mei’s homogenization technique up to third-order approximation is employed for the environmental dispersion processes for the above three factors jointly considered in wetland flows. For large-time scale investing in 2-D concentration distribution, it reveals that 2-D concentration distribution is not uniform in the vertical direction. Moreover, it is concluded that the concentration of pollutants flowing through a wetland is decreased with the increase of bottom-layer absorption parameters. Also, it is seen that when decomposition rate (
) increases, the pollutant is removed more rapidly, leading to a decrease in the longitudinal mean concentration. For pollutant emission into wetlands, this work is also analytically derived for a critical length and duration of a region influenced by pollutants. |
|---|---|
| AbstractList | Ecological decomposition and bottom-layer absorption are omnipresent and greatly influence pollutant mass transport in natural and modeled wetland flows. In addition, it considers the force of wind that blows on the wetland’s surface. The present work analytically explores the two-dimensional and longitudinal mean concentrations under the effects of ecological decomposition, bottom-layer absorption, and wind drag force based on Mei’s homogenization technique up to third-order approximation. The flow velocity is computed from the basic momentum equation under the free-surface wind effect to understand the mechanism behind the pollutant mass transport in wetland flows. Also, from the results it seems that as wind intensity increases, it typically exerts a greater force on the fluid, enhancing the downstream flow velocity. As an extension of the Taylor dispersion model, Mei’s homogenization technique up to third-order approximation is employed for the environmental dispersion processes for the above three factors jointly considered in wetland flows. For large-time scale investing in 2-D concentration distribution, it reveals that 2-D concentration distribution is not uniform in the vertical direction. Moreover, it is concluded that the concentration of pollutants flowing through a wetland is decreased with the increase of bottom-layer absorption parameters. Also, it is seen that when decomposition rate () increases, the pollutant is removed more rapidly, leading to a decrease in the longitudinal mean concentration. For pollutant emission into wetlands, this work is also analytically derived for a critical length and duration of a region influenced by pollutants. Ecological decomposition and bottom-layer absorption are omnipresent and greatly influence pollutant mass transport in natural and modeled wetland flows. In addition, it considers the force of wind that blows on the wetland’s surface. The present work analytically explores the two-dimensional and longitudinal mean concentrations under the effects of ecological decomposition, bottom-layer absorption, and wind drag force based on Mei’s homogenization technique up to third-order approximation. The flow velocity is computed from the basic momentum equation under the free-surface wind effect to understand the mechanism behind the pollutant mass transport in wetland flows. Also, from the results it seems that as wind intensity increases, it typically exerts a greater force on the fluid, enhancing the downstream flow velocity. As an extension of the Taylor dispersion model, Mei’s homogenization technique up to third-order approximation is employed for the environmental dispersion processes for the above three factors jointly considered in wetland flows. For large-time scale investing in 2-D concentration distribution, it reveals that 2-D concentration distribution is not uniform in the vertical direction. Moreover, it is concluded that the concentration of pollutants flowing through a wetland is decreased with the increase of bottom-layer absorption parameters. Also, it is seen that when decomposition rate ( ) increases, the pollutant is removed more rapidly, leading to a decrease in the longitudinal mean concentration. For pollutant emission into wetlands, this work is also analytically derived for a critical length and duration of a region influenced by pollutants. |
| ArticleNumber | 91 |
| Author | Mondal, Buddhadeb Barman, Krishnendu Saha, Shuvendu Mazumder, Bijoy S. |
| Author_xml | – sequence: 1 givenname: Buddhadeb surname: Mondal fullname: Mondal, Buddhadeb organization: Vidyasagar University – sequence: 2 givenname: Krishnendu surname: Barman fullname: Barman, Krishnendu email: krishnendu.math2010@gmail.com organization: Vidyasagar University – sequence: 3 givenname: Shuvendu surname: Saha fullname: Saha, Shuvendu organization: Vidyasagar University – sequence: 4 givenname: Bijoy S. surname: Mazumder fullname: Mazumder, Bijoy S. organization: Indian Institute of Technology Bombay |
| BookMark | eNp9kEtLxDAUhYMoOI7zB1wFXFdvctM0XcrgCwbc6MZNSNtUOnSSMck4zL83WtGdi8t9cL5z4ZyRY-edJeSCwRUDqK6jAAWqAF7m4qos8IjMOEosJGfs-HcGPCWLGNcAwCSXsq5n5HXpXTKbwRmXaArGxa0PiQ6O7m0ajetoP_p9pP7DBtr4lPymGM0hL6aJPmzT4B2Nu2Zt28x7uh8yYvs-r-fkpDdjtIufPicvd7fPy4di9XT_uLxZFS0ykQqFTV0BWgVYNpUwDEyrhJTQWZBGVrUStmJln4-lEi3rWNl2gkMj20qhUDgnl5PvNvj3nY1Jr_0uuPxSIysrRF4izyo-qdrgYwy219swbEw4aAb6K0Y9xahzjPo7Ro0ZwgmKWezebPiz_of6BG2Fdro |
| Cites_doi | 10.1016/j.cnsns.2018.04.024 10.1016/j.ijheatmasstransfer.2021.121669 10.1016/j.ijheatfluidflow.2024.109443 10.1016/j.ijheatmasstransfer.2010.08.028 10.1016/j.jhydrol.2017.12.029 10.1098/rspa.1953.0139 10.1038/387253a0 10.1016/j.ijengsci.2011.08.011 10.1007/s11356-022-21999-w 10.1080/00221686.2012.696559 10.1029/JC084iC04p01809 10.1016/j.ecolmodel.2012.04.020 10.1016/j.euromechflu.2008.09.003 10.1016/j.jhydrol.2013.02.042 10.1016/j.ecolind.2018.04.005 10.1029/97WR03238 10.1017/S002211209200452X 10.1063/5.0130789 10.1016/j.jhydrol.2016.09.062 10.1029/95WR03615 10.1016/j.ecolmodel.2009.10.024 10.1016/j.cnsns.2010.02.019 10.1016/j.ijheatmasstransfer.2020.119319 10.1098/rspa.1956.0065 10.1016/j.ecolind.2014.04.041 10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2 10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2 10.1016/j.jhydrol.2017.07.028 10.1016/j.jhydrol.2014.09.044 10.1016/j.cnsns.2022.106883 10.1016/j.jhydrol.2019.124149 10.1121/1.1907611 10.1016/j.cnsns.2013.04.027 10.1016/j.ecolind.2017.03.027 10.1016/j.csr.2008.03.015 10.1146/annurev.fl.05.010173.000423 10.1016/j.ecolind.2018.05.012 10.1016/S0065-2156(08)70078-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION 7TN 7UA C1K F1W H96 L.G |
| DOI | 10.1007/s40808-025-02285-3 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Computer Science |
| EISSN | 2363-6211 |
| ExternalDocumentID | 10_1007_s40808_025_02285_3 |
| GrantInformation_xml | – fundername: Department of Science and Technology, Government of West Bengal grantid: SUR/2022/000387 funderid: http://dx.doi.org/10.13039/501100008789 |
| GroupedDBID | 0R~ 203 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFDZB AFKRA AFOHR AFQWF AFRAH AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATCPS ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BENPR BGNMA BHPHI BKSAR CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD HCIFZ HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PATMY PCBAR PHGZM PHGZT PT4 PYCSY RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION 7TN 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-c314t-83b9703e8035b74a10ac84660de06a67984e715fc84584c1d15cd420b6c783483 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001402006500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2363-6203 |
| IngestDate | Wed Nov 05 08:29:20 EST 2025 Sat Nov 29 08:05:48 EST 2025 Thu May 22 04:29:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Ecological decomposition Bottom-layer absorption Multi-scale analysis Contaminant transport Dispersion Wetlands Wind drags |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-83b9703e8035b74a10ac84660de06a67984e715fc84584c1d15cd420b6c783483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40808-025-02285-3.pdf |
| PQID | 3157332532 |
| PQPubID | 2044383 |
| ParticipantIDs | proquest_journals_3157332532 crossref_primary_10_1007_s40808_025_02285_3 springer_journals_10_1007_s40808_025_02285_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Modeling earth systems and environment |
| PublicationTitleAbbrev | Model. Earth Syst. Environ |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | WH Munk (2285_CR21) 1950; 7 P Dijik (2285_CR7) 1998; 34 H Wang (2285_CR34) 2018; 557 P Wang (2285_CR37) 2013; 18 L Zeng (2285_CR43) 2012; 237–238 N Poddar (2285_CR25) 2021; 179 2285_CR50 S Paul (2285_CR23) 2009; 28 H Wang (2285_CR33) 2019; 579 2285_CR10 R Costanza (2285_CR6) 1997; 387 P Wang (2285_CR31) 2016; 543 G Taylor (2285_CR28) 1953; 219 A Yidan (2285_CR40) 2023; 116 B Berkowitz (2285_CR4) 1996; 32 2285_CR16 PC Fife (2285_CR12) 1975; 3445 HM Nepf (2285_CR22) 2012; 50 R Aris (2285_CR1) 1956; 235 J Luo (2285_CR15) 2017; 78 B Mondal (2285_CR20) 2022; 16 L Zeng (2285_CR41) 2011; 222 HB Fischer (2285_CR11) 1973; 5 L Zeng (2285_CR42) 2011; 16 SD Smith (2285_CR27) 1980; 10 H Wang (2285_CR36) 2020; 150 B Chen (2285_CR5) 2013; 488 P Wang (2285_CR32) 2017; 552 H Wang (2285_CR30) 2023; 30 S Ergun (2285_CR9) 1952; 48 B Mondal (2285_CR19) 2024; 108 Z Wu (2285_CR39) 2014; 519 XL Guo (2285_CR13) 2018; 105 S Liu (2285_CR14) 2005 CC Mei (2285_CR18) 1996; 32 YP Sheng (2285_CR26) 1979; 84 P Wang (2285_CR38) 2014; 47 S Paul (2285_CR24) 2011; 54 2285_CR29 S Barik (2285_CR3) 2018; 65 A Aruna (2285_CR2) 2023; 35 SA Elder (2285_CR8) 1959; 31 H Wang (2285_CR35) 2018; 105 BS Mazumder (2285_CR17) 1992; 239 |
| References_xml | – ident: 2285_CR10 – volume: 65 start-page: 1 year: 2018 ident: 2285_CR3 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2018.04.024 – volume: 179 start-page: 121669 year: 2021 ident: 2285_CR25 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.121669 – ident: 2285_CR29 – volume: 108 start-page: 10944 year: 2024 ident: 2285_CR19 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2024.109443 – volume: 54 start-page: 75 issue: 1–3 year: 2011 ident: 2285_CR24 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.08.028 – volume: 557 start-page: 83 year: 2018 ident: 2285_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.12.029 – volume: 219 start-page: 186 year: 1953 ident: 2285_CR28 publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1953.0139 – volume: 387 start-page: 253 year: 1997 ident: 2285_CR6 publication-title: Nature doi: 10.1038/387253a0 – ident: 2285_CR50 doi: 10.1016/j.ijengsci.2011.08.011 – volume: 30 start-page: 654 year: 2023 ident: 2285_CR30 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-21999-w – volume: 50 start-page: 262 issue: 3 year: 2012 ident: 2285_CR22 publication-title: J Hydraul Res doi: 10.1080/00221686.2012.696559 – volume: 84 start-page: 1809 issue: C4 year: 1979 ident: 2285_CR26 publication-title: J Geophys Res Oceans doi: 10.1029/JC084iC04p01809 – volume: 237–238 start-page: 101 year: 2012 ident: 2285_CR43 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2012.04.020 – volume: 28 start-page: 411 issue: 3 year: 2009 ident: 2285_CR23 publication-title: Eur J Mech B. Fluids doi: 10.1016/j.euromechflu.2008.09.003 – volume: 488 start-page: 118 year: 2013 ident: 2285_CR5 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.02.042 – volume: 105 start-page: 448 year: 2018 ident: 2285_CR35 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2018.04.005 – volume: 34 start-page: 457 issue: 3 year: 1998 ident: 2285_CR7 publication-title: Water Resour Res doi: 10.1029/97WR03238 – volume: 239 start-page: 523 year: 1992 ident: 2285_CR17 publication-title: J Fluid Mech doi: 10.1017/S002211209200452X – volume: 35 start-page: 033103 year: 2023 ident: 2285_CR2 publication-title: Phys Fluids doi: 10.1063/5.0130789 – volume: 543 start-page: 208 year: 2016 ident: 2285_CR31 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.09.062 – start-page: 81 volume-title: Handbook of porous media year: 2005 ident: 2285_CR14 – volume: 32 start-page: 901 issue: 4 year: 1996 ident: 2285_CR4 publication-title: Water Resour Res doi: 10.1029/95WR03615 – volume: 222 start-page: 293 year: 2011 ident: 2285_CR41 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2009.10.024 – volume: 16 start-page: 206 issue: 1 year: 2011 ident: 2285_CR42 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2010.02.019 – volume: 48 start-page: 89 year: 1952 ident: 2285_CR9 publication-title: Chem Eng Prog – volume: 150 start-page: 119319 year: 2020 ident: 2285_CR36 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2020.119319 – volume: 235 start-page: 67 year: 1956 ident: 2285_CR1 publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1956.0065 – volume: 47 start-page: 254 year: 2014 ident: 2285_CR38 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2014.04.041 – volume: 10 start-page: 709 issue: 5 year: 1980 ident: 2285_CR27 publication-title: J Phys Oceanogr doi: 10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2 – volume: 7 start-page: 80 issue: 2 year: 1950 ident: 2285_CR21 publication-title: J Meteorol doi: 10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2 – volume: 552 start-page: 674 year: 2017 ident: 2285_CR32 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.07.028 – volume: 519 start-page: 1974 year: 2014 ident: 2285_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.09.044 – volume: 116 start-page: 106883 year: 2023 ident: 2285_CR40 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2022.106883 – volume: 579 start-page: 124 year: 2019 ident: 2285_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124149 – volume: 31 start-page: 54 year: 1959 ident: 2285_CR8 publication-title: J Acoust Soc Am doi: 10.1121/1.1907611 – volume: 18 start-page: 3382 year: 2013 ident: 2285_CR37 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.04.027 – volume: 78 start-page: 421 year: 2017 ident: 2285_CR15 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2017.03.027 – ident: 2285_CR16 doi: 10.1016/j.csr.2008.03.015 – volume: 16 start-page: 1 issue: 1 year: 2022 ident: 2285_CR20 publication-title: Ecohydrol – volume: 5 start-page: 59 issue: 1 year: 1973 ident: 2285_CR11 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.05.010173.000423 – volume: 3445 start-page: 131 year: 1975 ident: 2285_CR12 publication-title: Proc R Soc Lond A – volume: 105 start-page: 544 year: 2018 ident: 2285_CR13 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2018.05.012 – volume: 32 start-page: 277 year: 1996 ident: 2285_CR18 publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70078-4 |
| SSID | ssj0001626699 |
| Score | 2.2875843 |
| Snippet | Ecological decomposition and bottom-layer absorption are omnipresent and greatly influence pollutant mass transport in natural and modeled wetland flows. In... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 91 |
| SubjectTerms | Absorption Approximation Chemistry and Earth Sciences Computer Science Contaminants Decomposition Dispersion Drag Earth and Environmental Science Earth Sciences Earth System Sciences Ecological effects Ecosystems Emission analysis Environment Flow velocity Fluid flow Free surfaces Homogenization Mass transport Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Momentum Momentum equation Original Article Physics Pollutants Pollution dispersion Pollution transport Statistics for Engineering Surface wind Two dimensional analysis Two dimensional flow Velocity Vertical distribution Wetlands Wind effects |
| Title | Contaminant transport in wetland flows over bottom-layer absorption subject to wind effect |
| URI | https://link.springer.com/article/10.1007/s40808-025-02285-3 https://www.proquest.com/docview/3157332532 |
| Volume | 11 |
| WOSCitedRecordID | wos001402006500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2363-6211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: RSV dateStart: 20150601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGP3QqeDF6VScTsnBmwbSpmnTo4jTgwzxxxheSpImMBibrJ3D_94kazcUPeiphZZQ8iVfXvO9vAdwbjE3MYnJMbdXHDEa45SrHBNJDYsSY0IvptO_T3o9PhikD9WhsKJmu9clSZ-pl4fdIgtuOHb2q06zhWG6Dht2ueNuOj4-9Vc7Kxajx944MnRFyjgktDot83MzX1ekFcz8Vhn1C063-b9P3YWdCmCiq8WI2IM1PW5BszZvQNVcbsHWrff0_bB3ngWqin14dVpVYkGOQWUte46GYzTXpaNAIjOazAvkaJ_IeZDZBDsSFrQjIYvJ1GcfVMyk29tB5QTN7Q8_WjBGDuCle_N8fYcr8wWsaBCVmFOZ2mygOaFMJpEIiFAWq8Qk1yQWrnYT6SRwDDBXaVVBHjCVRyGRsXLeHZweQmM8GesjQNQESS4sUlLSRNowGXAhUia0IiqVTLfhog5A9rbQ2MiWasq-KzPblZnvyoy2oVPHKKvmW5HRwOk6hoyGbbisY7J6_Htrx397_QS2Qx9WR93pQKOczvQpbKr3clhMz_w4_ATtWtaB |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGP3wir54F-c1D75pIG2SXh5FnIpziJchvpQkTWAwNlk7h__eJGsdij7oUwstoeRLvpzmOzkH4NhibmJik-PEXjHjNMJponJMJDWcxcaEXkyn04rb7eT5Ob2rDoUVNdu9Lkn6TP152I1ZcJNgZ7_qNFs4prMwz-yK5Yh89w-d6c6KxeiRN44MXZEyCgmtTsv83MzXFWkKM79VRv2C01z936euwUoFMNHZZESsw4zub8Bqbd6Aqrm8AYuX3tP33d55FqgqNuHFaVWJCTkGlbXsOer20ViXjgKJTG8wLpCjfSLnQWYTbE9Y0I6ELAZDn31QMZJubweVAzS2P_xowhjZgqfmxeP5Fa7MF7CiAStxQmVqs4FOCOUyZiIgQlmsEpFck0i42g3TceAYYK7SqoI84CpnIZGRct4dCd2Guf6gr3cAURPEubBISUnDtOEySIRIudCKqFRy3YCTOgDZ60RjI_tUU_ZdmdmuzHxXZrQB-3WMsmq-FRkNnK5jyGnYgNM6JtPHv7e2-7fXj2Dp6vG2lbWu2zd7sBz6EDsazz7MlcORPoAF9VZ2i-GhH5MfBKjZZQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2iQFE3hfIQA7R40R1YOLGdxxLRTkFFIyQeQt1EtmNLI6EMmgRG_H19nYRpUbtArBIpD0W-fpz4nnsOwFePuZlLXUkzf6RC8oTmmSkp09xJkToXBzGdm_N0NMpub_OLP6r4A9u9T0m2NQ2o0lQ1R_elO3oufBMe6GQUrVhRv0VS_g6WBJoG4f_65c18l8Xj9SSYSMaYsExixrvKmX-_5u_VaQ45X2RJw-IzXH37Z6_Bxw54kuO2p3yCBVutw2pv6kC6Mb4O738Er98nfxbYoabegF-oYaVa0gxpejl0Mq7IzDZIjSTubjKrCdJBCXqT-Yn3TnkwT5SuJ9MwK5H6QeOeD2kmZDb2j7RMkk24Hn6_OjmlnSkDNTwSDc24zv0sYTPGpU6FipgyHsMkrLQsUZjTETaNkBmGGVgTlZE0pYiZTgx6emR8CxarSWW3gXAXpaXyCMpoJ6yTOsqUyqWyhplcSzuAgz4YxX2rvVE8qyyHpix8UxahKQs-gL0-XkU3DuuCR6j3GEseD-Cwj8_88v_ftvO62_dh5eLbsDg_G_3chQ9xiDCye_ZgsZk-2M-wbB6bcT39Errnb7jw4kk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contaminant+transport+in+wetland+flows+over+bottom-layer+absorption+subject+to+wind+effect&rft.jtitle=Modeling+earth+systems+and+environment&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-6203&rft.eissn=2363-6211&rft.volume=11&rft.issue=2&rft.spage=91&rft_id=info:doi/10.1007%2Fs40808-025-02285-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-6203&client=summon |