Characterizations of Herglotz–Nevanlinna Functions Using Positive Semi-Definite Functions and the Nevanlinna Kernel in Several Variables
In this paper, we give several characterizations of Herglotz–Nevanlinna functions in terms of a specific type of positive semi-definite functions called Poisson-type functions. This allows us to propose a multidimensional analogue of the classical Nevanlinna kernel and a definition of generalized Ne...
Uloženo v:
| Vydáno v: | Complex analysis and operator theory Ročník 15; číslo 7 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.10.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1661-8254, 1661-8262 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we give several characterizations of Herglotz–Nevanlinna functions in terms of a specific type of positive semi-definite functions called Poisson-type functions. This allows us to propose a multidimensional analogue of the classical Nevanlinna kernel and a definition of generalized Nevanlinna functions in several variables. Furthermore, a characterization of the symmetric extension of a Herglotz–Nevanlinna function is also given. The subclass of Loewner functions is discussed as well, along with an interpretation of the main result in terms of holomorphic functions on the unit polydisk with non-negative real part. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-8254 1661-8262 |
| DOI: | 10.1007/s11785-021-01155-x |