Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time

We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 86; H. 9; S. 3027 - 3053
1. Verfasser: Eppstein, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2024
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in the output size, by filtering the output of simple backtracking algorithms for non-crossing paths or surrounding cycles respectively. We do not assume that the points are in general position. To prove these results we relate the numbers of non-crossing structures to two easily-computed parameters of the point set: the minimum number of points whose removal results in a collinear set, and the number of points interior to the convex hull. These relations also lead to polynomial-time approximation algorithms for the numbers of structures of all four types, accurate to within a constant factor of the logarithm of these numbers.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-024-01255-y