Enhanced deep reinforcement learning-based thermal management strategy for PEMFC considering coolant system parasitic power

Thermal management of fuel cells is crucial for maintaining their efficient operation, as improper temperature regulation can significantly reduce fuel cell output performance and lifespan. With the growing global energy demand and the pursuit of sustainable energy, fuel cells play a key role in ach...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 146; p. 149919
Main Authors: Zhang, Zhi, Yuan, Weiwei, Wang, Yaxiong, Ou, Kai, Huang, Yin, Xuan, Dongji
Format: Journal Article
Language:English
Published: Elsevier Ltd 09.07.2025
Subjects:
ISSN:0360-3199
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Thermal management of fuel cells is crucial for maintaining their efficient operation, as improper temperature regulation can significantly reduce fuel cell output performance and lifespan. With the growing global energy demand and the pursuit of sustainable energy, fuel cells play a key role in achieving renewable energy goals, particularly in the context of the United Nations Sustainable Development Goal (SDG-7). Therefore, ensuring the high efficiency and stability of fuel cells is essential for driving the transition to clean energy. However, existing thermal management strategies are primarily based on steady-state models and traditional control methods, which are inherently limited by slow response times, low control accuracy, and insufficient utilization of parasitic cooling power. These methods struggle to address the nonlinear dynamic characteristics and multivariable coupling issues of fuel cell systems. This study addresses these challenges by proposing an innovative control strategy that integrates adaptive learning and exploration mechanisms through the use of the twin delay deep deterministic policy gradient (ALEDE-TD3) algorithm based on dynamic models. The proposed method aims to minimize parasitic cooling power while overcoming the limitations of traditional approaches. By introducing dynamic exploration and learning rate decay mechanisms, the strategy significantly enhances the system's response speed and control stability, successfully mitigating the response delays caused by multivariable coupling. Simulation results show that the ALEDE-TD3 strategy outperforms TD3, DDPG, and PID algorithms across all key performance indicators, with temperature overshoot reduced by 63.1 %, 87.4 %, and 88.9 %, respectively, and average settling time reduced by 46.7 %, 56.7 %, and 59.1 %, while consistently maintaining the lowest parasitic cooling power. This approach not only improves the overall performance of the thermal management system but also holds significant implications for advancing renewable energy goals, demonstrating the immense potential of reinforcement learning in fuel cell control. •Proposed ALEDE-TD3 strategy improves PEMFC thermal control accuracy and stability.•Effectively reduces cooling system parasitic power and total energy consumption.•Introduces adaptive exploration and learning rate decay for faster convergence.
AbstractList Thermal management of fuel cells is crucial for maintaining their efficient operation, as improper temperature regulation can significantly reduce fuel cell output performance and lifespan. With the growing global energy demand and the pursuit of sustainable energy, fuel cells play a key role in achieving renewable energy goals, particularly in the context of the United Nations Sustainable Development Goal (SDG-7). Therefore, ensuring the high efficiency and stability of fuel cells is essential for driving the transition to clean energy. However, existing thermal management strategies are primarily based on steady-state models and traditional control methods, which are inherently limited by slow response times, low control accuracy, and insufficient utilization of parasitic cooling power. These methods struggle to address the nonlinear dynamic characteristics and multivariable coupling issues of fuel cell systems. This study addresses these challenges by proposing an innovative control strategy that integrates adaptive learning and exploration mechanisms through the use of the twin delay deep deterministic policy gradient (ALEDE-TD3) algorithm based on dynamic models. The proposed method aims to minimize parasitic cooling power while overcoming the limitations of traditional approaches. By introducing dynamic exploration and learning rate decay mechanisms, the strategy significantly enhances the system's response speed and control stability, successfully mitigating the response delays caused by multivariable coupling. Simulation results show that the ALEDE-TD3 strategy outperforms TD3, DDPG, and PID algorithms across all key performance indicators, with temperature overshoot reduced by 63.1 %, 87.4 %, and 88.9 %, respectively, and average settling time reduced by 46.7 %, 56.7 %, and 59.1 %, while consistently maintaining the lowest parasitic cooling power. This approach not only improves the overall performance of the thermal management system but also holds significant implications for advancing renewable energy goals, demonstrating the immense potential of reinforcement learning in fuel cell control. •Proposed ALEDE-TD3 strategy improves PEMFC thermal control accuracy and stability.•Effectively reduces cooling system parasitic power and total energy consumption.•Introduces adaptive exploration and learning rate decay for faster convergence.
ArticleNumber 149919
Author Huang, Yin
Yuan, Weiwei
Wang, Yaxiong
Zhang, Zhi
Ou, Kai
Xuan, Dongji
Author_xml – sequence: 1
  givenname: Zhi
  surname: Zhang
  fullname: Zhang, Zhi
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, China
– sequence: 2
  givenname: Weiwei
  surname: Yuan
  fullname: Yuan, Weiwei
  email: yuanweiwei@mju.edu.cn
  organization: School of Computer and Big Data, Minjiang University, China
– sequence: 3
  givenname: Yaxiong
  surname: Wang
  fullname: Wang, Yaxiong
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
– sequence: 4
  givenname: Kai
  surname: Ou
  fullname: Ou, Kai
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
– sequence: 5
  givenname: Yin
  surname: Huang
  fullname: Huang, Yin
  organization: School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, China
– sequence: 6
  givenname: Dongji
  orcidid: 0000-0003-1119-8975
  surname: Xuan
  fullname: Xuan, Dongji
  email: xuandongji@163.com
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, China
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMWO89NIHEBVC0hFcICz5djr1lHiRLYFinh5HBUuXHra0Wq-0e4s0Mz2FhC6oWRFCS1um5VpjqMCC6uUpPmKFHFfzdCcsIIkjFbVJVp43xBCS5JVc_S9tUdhJSisAAbswFjdOwkd2IBbEM4ae0hq4aMjHMF1osWdsOJwcvjgRIDDiCOE37Yvuw2WvfVGgYtc1H0rJtvoA3R4EE54E4zEQ_8F7gpdaNF6uP6dS_Sx275vnpL96-Pz5mGfSEazkOR6TVJS5IpkjGpR6kwxkEBlzSTLKl3WGa1LIMU6hajzGjTVWSkVYZSWlLElujvlStd770BzaYIIprfxetNySvhUHm_4X3l8Ko-TIu6riBf_8MGZTrjxPHh_AiE-92nAcS8NTGUbBzJw1ZtzET8vm5WY
CitedBy_id crossref_primary_10_3390_en18154100
Cites_doi 10.1016/j.renene.2019.09.048
10.1016/j.egyr.2022.10.236
10.1016/j.apenergy.2021.116977
10.1109/TCYB.2021.3107415
10.1049/rpg2.12240
10.1016/j.applthermaleng.2023.122041
10.1016/j.applthermaleng.2021.117865
10.1016/j.fcr.2022.108475
10.1016/j.esr.2024.101380
10.1016/j.ijhydene.2023.02.012
10.1016/j.jpowsour.2015.02.106
10.1016/j.enconman.2021.115030
10.1016/S0378-7753(97)02683-9
10.1016/j.renene.2021.10.084
10.1016/j.apenergy.2023.122489
10.1007/s42154-023-00253-0
10.1016/j.ijhydene.2015.08.067
10.1016/j.enconman.2024.118887
10.1016/j.ijhydene.2024.10.028
10.1016/j.ijhydene.2010.06.046
10.1016/j.electacta.2014.04.003
10.1016/j.renene.2008.02.015
10.3390/app10020575
10.1016/j.jclepro.2017.02.033
10.1016/j.aei.2021.101360
10.1016/j.neunet.2022.02.014
10.1016/j.ijhydene.2016.10.134
10.1109/TNNLS.2021.3093429
10.1016/j.ijhydene.2022.12.226
10.1016/j.jpowsour.2014.11.126
10.1016/j.ijhydene.2022.08.154
10.1016/j.apenergy.2024.124073
10.1016/j.jpowsour.2007.12.066
10.1177/0958305X18802775
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2025.06.109
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijhydene_2025_06_109
S0360319925028885
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c314t-5f802065d0431fa7f4d3ece1cb3c349f7b41b7e0682e7b45bef1f47cd03117133
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513645300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 07:46:09 EST 2025
Tue Nov 18 22:32:57 EST 2025
Sat Aug 09 17:31:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Thermal management
PEMFC
Parasitic power
Control strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-5f802065d0431fa7f4d3ece1cb3c349f7b41b7e0682e7b45bef1f47cd03117133
ORCID 0000-0003-1119-8975
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2025_06_109
crossref_primary_10_1016_j_ijhydene_2025_06_109
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_06_109
PublicationCentury 2000
PublicationDate 2025-07-09
PublicationDateYYYYMMDD 2025-07-09
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-09
  day: 09
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Li, Gao (bib16) 2015; 283
Kim, Han, Park (bib43) 2020; 10
Lee, Lalk, Appleby (bib29) 1998; 70
Vengatesan, Jayakumar, Sadasivuni (bib1) 2024; 53
Chatrattanawet (bib19) 2017; 148
Horgan (bib24) 2018
Gao, Zhou (bib46) 2024; 375
Fujimoto (bib40) 2018
Iiduka (bib42) 2021; 52
Schaul (bib25) 2015
Wang, Hussain, Sun (bib2) 2022; 280
Mao, Liu, Tan (bib3) 2023; 48
Yuan, Zhou, Zhang (bib5) 2024; 357
Yuan, Zhang, Wei (bib6) 2023; 6
Khan, Shareef, Wahyudie (bib31) 2019; 30
Yuan, Wu, Zhou, Xiong, Wang (bib34) 2022; 8
Deng, Liu, Hai, Peng, Löwenstein, Pischinger, Hameyer (bib22) 2022; 251
Ahn, Choe (bib33) 2008; 179
Li, Li (bib13) 2016
Ahn, Choe (bib7) 2008; 179
Zhao, Pan, Ma (bib23) 2023
Zhiyu, Tao, Zhixiang (bib11) 2014; 132
Pohjoranta (bib18) 2015; 277
Na (bib44) 2022; 150
Han, Park, Yu (bib28) 2015; 40
Hu, Cao, Zhu (bib9) 2010; 35
Li, Cui, Nemeth, Jansen (bib38) 2021; 293
Li, Cui, Nemeth, Jansen (bib41) 2021; 293
Xia, Apergis, Bashir (bib4) 2022; 183
Larminie, Dicks (bib30) 2013
Sun, Li, Hua (bib17) 2020; 147
Qi, Zhu, Song, Yan (bib20) 2020; 238
Chen, Xu, Fang (bib10) 2022; 203
Liu, Chen, Kumar (bib12) 2023; 48
Wang, Li, Xian, Yu, Chen, Wen-Quan (bib45) 2024; 91
Tang, Chang, Liu, Xie, Pan, Yuan, Xuezhe, Dai (bib37) 2024; 318
Yan, Chen, Liu (bib14) 2019
Guzzella (bib32) 1999
Zhou, Zhao, Shuai, Li, Williams, Xu (bib21) 2021; 32
Li, Yang, Yu (bib35) 2022; 16
Yang, Quan, Wang, Liu, Zhang, Chang, Zhao (bib47) 2024; 238
Tan, Hu, Liu, Chen, Xuan (bib36) 2022; 47
Huang, Kang, Mao, Hu, Tan, Xuan (bib26) 2023; 283
Han (bib15) 2017; 42
Yu, Jung (bib27) 2008; 33
Liu, Liu, Xiong, Xu, Liu (bib39) 2021; 49
Naini (bib8) 2021
Yang (10.1016/j.ijhydene.2025.06.109_bib47) 2024; 238
Na (10.1016/j.ijhydene.2025.06.109_bib44) 2022; 150
Zhao (10.1016/j.ijhydene.2025.06.109_bib23) 2023
Lee (10.1016/j.ijhydene.2025.06.109_bib29) 1998; 70
Chen (10.1016/j.ijhydene.2025.06.109_bib10) 2022; 203
Xia (10.1016/j.ijhydene.2025.06.109_bib4) 2022; 183
Naini (10.1016/j.ijhydene.2025.06.109_bib8) 2021
Pohjoranta (10.1016/j.ijhydene.2025.06.109_bib18) 2015; 277
Ahn (10.1016/j.ijhydene.2025.06.109_bib33) 2008; 179
Huang (10.1016/j.ijhydene.2025.06.109_bib26) 2023; 283
Li (10.1016/j.ijhydene.2025.06.109_bib38) 2021; 293
Li (10.1016/j.ijhydene.2025.06.109_bib41) 2021; 293
Han (10.1016/j.ijhydene.2025.06.109_bib15) 2017; 42
Hu (10.1016/j.ijhydene.2025.06.109_bib9) 2010; 35
Deng (10.1016/j.ijhydene.2025.06.109_bib22) 2022; 251
Zhiyu (10.1016/j.ijhydene.2025.06.109_bib11) 2014; 132
Fujimoto (10.1016/j.ijhydene.2025.06.109_bib40) 2018
Mao (10.1016/j.ijhydene.2025.06.109_bib3) 2023; 48
Khan (10.1016/j.ijhydene.2025.06.109_bib31) 2019; 30
Gao (10.1016/j.ijhydene.2025.06.109_bib46) 2024; 375
Li (10.1016/j.ijhydene.2025.06.109_bib16) 2015; 283
Tang (10.1016/j.ijhydene.2025.06.109_bib37) 2024; 318
Sun (10.1016/j.ijhydene.2025.06.109_bib17) 2020; 147
Kim (10.1016/j.ijhydene.2025.06.109_bib43) 2020; 10
Yu (10.1016/j.ijhydene.2025.06.109_bib27) 2008; 33
Liu (10.1016/j.ijhydene.2025.06.109_bib39) 2021; 49
Vengatesan (10.1016/j.ijhydene.2025.06.109_bib1) 2024; 53
Yuan (10.1016/j.ijhydene.2025.06.109_bib6) 2023; 6
Li (10.1016/j.ijhydene.2025.06.109_bib35) 2022; 16
Wang (10.1016/j.ijhydene.2025.06.109_bib2) 2022; 280
Yuan (10.1016/j.ijhydene.2025.06.109_bib5) 2024; 357
Yuan (10.1016/j.ijhydene.2025.06.109_bib34) 2022; 8
Qi (10.1016/j.ijhydene.2025.06.109_bib20) 2020; 238
Guzzella (10.1016/j.ijhydene.2025.06.109_bib32) 1999
Schaul (10.1016/j.ijhydene.2025.06.109_bib25) 2015
Larminie (10.1016/j.ijhydene.2025.06.109_bib30) 2013
Yan (10.1016/j.ijhydene.2025.06.109_bib14) 2019
Han (10.1016/j.ijhydene.2025.06.109_bib28) 2015; 40
Li (10.1016/j.ijhydene.2025.06.109_bib13) 2016
Zhou (10.1016/j.ijhydene.2025.06.109_bib21) 2021; 32
Chatrattanawet (10.1016/j.ijhydene.2025.06.109_bib19) 2017; 148
Horgan (10.1016/j.ijhydene.2025.06.109_bib24) 2018
Wang (10.1016/j.ijhydene.2025.06.109_bib45) 2024; 91
Liu (10.1016/j.ijhydene.2025.06.109_bib12) 2023; 48
Tan (10.1016/j.ijhydene.2025.06.109_bib36) 2022; 47
Ahn (10.1016/j.ijhydene.2025.06.109_bib7) 2008; 179
Iiduka (10.1016/j.ijhydene.2025.06.109_bib42) 2021; 52
References_xml – volume: 179
  year: 2008
  ident: bib33
  article-title: Coolant controls of a PEM fuel cell system
  publication-title: J Power Sources
– year: 2015
  ident: bib25
  article-title: Prioritized experience replay
– year: 2013
  ident: bib30
  article-title: Fuel cell systems explained
– volume: 30
  year: 2019
  ident: bib31
  article-title: Influences of ambient conditions on the performance of proton exchange membrane fuel cell using various models
  publication-title: Energy Environ
– volume: 280
  year: 2022
  ident: bib2
  article-title: Nitrogen application at a lower rate reduce net field global warming potential and greenhouse gas intensity in winter wheat grown in semi-arid region of the Loess Plateau
  publication-title: Field Crops Res
– volume: 283
  year: 2023
  ident: bib26
  article-title: Deep reinforcement learning based energy management strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle
  publication-title: Energy (Calg)
– volume: 357
  year: 2024
  ident: bib5
  article-title: Shaozhe, “Unconventional frequency response analysis of pem fuel cell based on high-order frequency response function and total harmonic distortion,”
  publication-title: Appl Energy
– volume: 6
  start-page: 597
  year: 2023
  end-page: 610
  ident: bib6
  article-title: Xuezhe, “Fault diagnosis of proton exchange membrane fuel cell based on nonlinear impedance spectrum,”
  publication-title: Automot. Innovation
– volume: 293
  year: 2021
  ident: bib38
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
– volume: 35
  start-page: 9110
  year: 2010
  end-page: 9123
  ident: bib9
  article-title: Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 48
  start-page: 19196
  year: 2023
  end-page: 19206
  ident: bib12
  article-title: Model-based decoupling control for the thermal management system of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 148
  start-page: 934
  year: 2017
  end-page: 947
  ident: bib19
  article-title: Control structure design and robust model pre dictive control for controlling a proton exchange membrane fuel cell
  publication-title: J Clean Prod
– volume: 238
  year: 2020
  ident: bib20
  article-title: Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle
  publication-title: Energy (Calg)
– volume: 40
  start-page: 13549
  year: 2015
  end-page: 13557
  ident: bib28
  article-title: Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system
  publication-title: Int J Hydrogen Energy
– volume: 70
  start-page: 258e68
  year: 1998
  ident: bib29
  article-title: Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks
  publication-title: J Power Sources
– volume: 283
  start-page: 452
  year: 2015
  end-page: 463
  ident: bib16
  article-title: On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells
  publication-title: J Power Sources
– volume: 32
  start-page: 5298
  year: 2021
  end-page: 5308
  ident: bib21
  article-title: Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle
  publication-title: IEEE Transact Neural Networks Learn Syst
– year: 2018
  ident: bib24
  article-title: Distributed prioritized experience replay
– volume: 48
  start-page: 13294
  year: 2023
  end-page: 13307
  ident: bib3
  article-title: Multi-objective optimization of gradient porosity of gas diffusion layer and operation parameters in PEMFC based on recombination optimization compromise strategy
  publication-title: Int J Hydrogen Energy
– volume: 147
  year: 2020
  ident: bib17
  article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control
  publication-title: Renew Energy
– volume: 16
  start-page: 1283
  year: 2022
  end-page: 1298
  ident: bib35
  article-title: Data-driven optimal PEMFC temperature control via curriculum guidance strategy-based large-scale deep reinforcement learning
  publication-title: IET Renew Power Gener
– volume: 49
  year: 2021
  ident: bib39
  article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function
  publication-title: Adv Eng Inform
– volume: 318
  year: 2024
  ident: bib37
  article-title: Investigating the effects of multi-dimensional parameters on the internal hydrothermal characteristics of proton exchange membrane fuel cells via an enhanced impedance dimensional model
  publication-title: Energy Convers Manag
– year: 2021
  ident: bib8
  article-title: Innovative thermal management systems for autonomous vehicles — design, model, and test
– volume: 132
  start-page: 389
  year: 2014
  end-page: 396
  ident: bib11
  article-title: Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control
  publication-title: Electrochim Acta
– volume: 52
  start-page: 13250
  year: 2021
  end-page: 13261
  ident: bib42
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans Cybern
– volume: 150
  start-page: 326
  year: 2022
  end-page: 335
  ident: bib44
  article-title: Efficient learning rate adaptation based on hierarchical optimization approach
  publication-title: Neural Network
– volume: 277
  start-page: 239
  year: 2015
  end-page: 250
  ident: bib18
  article-title: Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data
  publication-title: J Power Sources
– volume: 53
  year: 2024
  ident: bib1
  article-title: FCEV vs. BEV—a short overview on identifying the key contributors to affordable & clean energy (SDG-7)
  publication-title: Energy Strategy Rev
– volume: 8
  start-page: 338
  year: 2022
  end-page: 348
  ident: bib34
  article-title: MPC-based thermal management for water-cooled proton exchange membrane fuel cells
  publication-title: Energy Rep
– volume: 251
  year: 2022
  ident: bib22
  article-title: Deep reinforcement learning based energy management strategy of fuel cell hybrid railway vehicles considering fuel cell aging
  publication-title: Energy Convers Manag
– volume: 179
  start-page: 252
  year: 2008
  end-page: 264
  ident: bib7
  article-title: Coolant controls of a PEM fuel cell system
  publication-title: J Power Sources
– volume: 238
  year: 2024
  ident: bib47
  article-title: Characteristics of heat, power generation, and energy efficiency study on a novel air-cooled PEMFC stack based on micro heat pipe arrays
  publication-title: Appl Therm Eng
– volume: 375
  year: 2024
  ident: bib46
  article-title: A co-simulation platform and climate-adaptive optimisation for cross-scale PEMFC combined heat and power supply in buildings with semi-empirical surrogate models
  publication-title: Appl Energy
– year: 2016
  ident: bib13
  article-title: Temperature control of PEMFC stack based on BP neural network
– volume: 47
  start-page: 35790
  year: 2022
  end-page: 35809
  ident: bib36
  article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance
  publication-title: Int J Hydrogen Energy
– volume: 91
  start-page: 843
  year: 2024
  end-page: 857
  ident: bib45
  article-title: Lifetime and efficiency analysis and optimization of PEMFC-based combined heat and power system with auxiliary heating for battery
  publication-title: Int J Hydrogen Energy
– year: 2019
  ident: bib14
  article-title: Model-based fault tolerant control for the thermal management of PEMFC systems
  publication-title: IEEE Trans Ind Electron
– volume: 42
  start-page: 4328
  year: 2017
  end-page: 4341
  ident: bib15
  article-title: Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm
  publication-title: Int J Hydrogen Energy
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: bib40
  article-title: Addressing function approximation error in actor critic methods
  publication-title: Proceedings of the 35th international conference on machine learning
– volume: 10
  start-page: 575
  year: 2020
  ident: bib43
  article-title: Motion planning of robot manipulators for a smoother path using a twin delayed deep deterministic policy gradient with hindsight experience replay
  publication-title: Appl Sci Basel
– year: 1999
  ident: bib32
  article-title: Control oriented modelling of fuel-cell based vehicles
  publication-title: Presentation in nsf workshop on the integration of
– volume: 183
  year: 2022
  ident: bib4
  article-title: Investigating the role of globalization, and energy consumption for environmental externalities: empirical evidence from developed and developing economies
  publication-title: Renew Energy
– volume: 203
  year: 2022
  ident: bib10
  article-title: Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method
  publication-title: Appl Therm Eng
– volume: 293
  year: 2021
  ident: bib41
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
– volume: 33
  start-page: 2540
  year: 2008
  end-page: 2548
  ident: bib27
  article-title: Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area
  publication-title: Renew Energy
– start-page: 48
  year: 2023
  ident: bib23
  article-title: Research on joint control of water pump and radiator of PEMFC based on TCO-DDPG
  publication-title: Int J Hydrogen Energy
– volume: 147
  year: 2020
  ident: 10.1016/j.ijhydene.2025.06.109_bib17
  article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.048
– volume: 8
  start-page: 338
  issue: Supplement 16
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib34
  article-title: MPC-based thermal management for water-cooled proton exchange membrane fuel cells
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.10.236
– start-page: 1587
  year: 2018
  ident: 10.1016/j.ijhydene.2025.06.109_bib40
  article-title: Addressing function approximation error in actor critic methods
– year: 2016
  ident: 10.1016/j.ijhydene.2025.06.109_bib13
– volume: 293
  year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib41
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116977
– volume: 52
  start-page: 13250
  issue: 12
  year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib42
  article-title: Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3107415
– volume: 16
  start-page: 1283
  issue: 7
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib35
  article-title: Data-driven optimal PEMFC temperature control via curriculum guidance strategy-based large-scale deep reinforcement learning
  publication-title: IET Renew Power Gener
  doi: 10.1049/rpg2.12240
– volume: 238
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib47
  article-title: Characteristics of heat, power generation, and energy efficiency study on a novel air-cooled PEMFC stack based on micro heat pipe arrays
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2023.122041
– year: 1999
  ident: 10.1016/j.ijhydene.2025.06.109_bib32
  article-title: Control oriented modelling of fuel-cell based vehicles
– volume: 293
  year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib38
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116977
– volume: 203
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib10
  article-title: Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117865
– volume: 280
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib2
  article-title: Nitrogen application at a lower rate reduce net field global warming potential and greenhouse gas intensity in winter wheat grown in semi-arid region of the Loess Plateau
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2022.108475
– volume: 53
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib1
  article-title: FCEV vs. BEV—a short overview on identifying the key contributors to affordable & clean energy (SDG-7)
  publication-title: Energy Strategy Rev
  doi: 10.1016/j.esr.2024.101380
– volume: 48
  start-page: 19196
  issue: 50
  year: 2023
  ident: 10.1016/j.ijhydene.2025.06.109_bib12
  article-title: Model-based decoupling control for the thermal management system of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.02.012
– start-page: 48
  issue: 98
  year: 2023
  ident: 10.1016/j.ijhydene.2025.06.109_bib23
  article-title: Research on joint control of water pump and radiator of PEMFC based on TCO-DDPG
  publication-title: Int J Hydrogen Energy
– volume: 283
  start-page: 452
  issue: jun.1
  year: 2015
  ident: 10.1016/j.ijhydene.2025.06.109_bib16
  article-title: On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.02.106
– volume: 251
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib22
  article-title: Deep reinforcement learning based energy management strategy of fuel cell hybrid railway vehicles considering fuel cell aging
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115030
– volume: 70
  start-page: 258e68
  issue: 2
  year: 1998
  ident: 10.1016/j.ijhydene.2025.06.109_bib29
  article-title: Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(97)02683-9
– volume: 183
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib4
  article-title: Investigating the role of globalization, and energy consumption for environmental externalities: empirical evidence from developed and developing economies
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.10.084
– volume: 357
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib5
  article-title: Shaozhe, “Unconventional frequency response analysis of pem fuel cell based on high-order frequency response function and total harmonic distortion,”
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122489
– volume: 6
  start-page: 597
  issue: 4
  year: 2023
  ident: 10.1016/j.ijhydene.2025.06.109_bib6
  article-title: Xuezhe, “Fault diagnosis of proton exchange membrane fuel cell based on nonlinear impedance spectrum,”
  publication-title: Automot. Innovation
  doi: 10.1007/s42154-023-00253-0
– year: 2018
  ident: 10.1016/j.ijhydene.2025.06.109_bib24
– volume: 40
  start-page: 13549
  issue: 39
  year: 2015
  ident: 10.1016/j.ijhydene.2025.06.109_bib28
  article-title: Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.067
– volume: 318
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib37
  article-title: Investigating the effects of multi-dimensional parameters on the internal hydrothermal characteristics of proton exchange membrane fuel cells via an enhanced impedance dimensional model
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2024.118887
– volume: 91
  start-page: 843
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib45
  article-title: Lifetime and efficiency analysis and optimization of PEMFC-based combined heat and power system with auxiliary heating for battery
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.10.028
– volume: 35
  start-page: 9110
  issue: 17
  year: 2010
  ident: 10.1016/j.ijhydene.2025.06.109_bib9
  article-title: Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.046
– volume: 238
  year: 2020
  ident: 10.1016/j.ijhydene.2025.06.109_bib20
  article-title: Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle
  publication-title: Energy (Calg)
– year: 2015
  ident: 10.1016/j.ijhydene.2025.06.109_bib25
– volume: 132
  start-page: 389
  year: 2014
  ident: 10.1016/j.ijhydene.2025.06.109_bib11
  article-title: Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.04.003
– volume: 33
  start-page: 2540
  issue: 12
  year: 2008
  ident: 10.1016/j.ijhydene.2025.06.109_bib27
  article-title: Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.02.015
– volume: 10
  start-page: 575
  issue: 2
  year: 2020
  ident: 10.1016/j.ijhydene.2025.06.109_bib43
  article-title: Motion planning of robot manipulators for a smoother path using a twin delayed deep deterministic policy gradient with hindsight experience replay
  publication-title: Appl Sci Basel
  doi: 10.3390/app10020575
– volume: 148
  start-page: 934
  year: 2017
  ident: 10.1016/j.ijhydene.2025.06.109_bib19
  article-title: Control structure design and robust model pre dictive control for controlling a proton exchange membrane fuel cell
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.02.033
– volume: 49
  year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib39
  article-title: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101360
– volume: 150
  start-page: 326
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib44
  article-title: Efficient learning rate adaptation based on hierarchical optimization approach
  publication-title: Neural Network
  doi: 10.1016/j.neunet.2022.02.014
– volume: 42
  start-page: 4328
  issue: 7
  year: 2017
  ident: 10.1016/j.ijhydene.2025.06.109_bib15
  article-title: Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.10.134
– issue: 99
  year: 2019
  ident: 10.1016/j.ijhydene.2025.06.109_bib14
  article-title: Model-based fault tolerant control for the thermal management of PEMFC systems
  publication-title: IEEE Trans Ind Electron
– volume: 32
  start-page: 5298
  issue: 12
  year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib21
  article-title: Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle
  publication-title: IEEE Transact Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2021.3093429
– volume: 283
  year: 2023
  ident: 10.1016/j.ijhydene.2025.06.109_bib26
  article-title: Deep reinforcement learning based energy management strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle
  publication-title: Energy (Calg)
– volume: 48
  start-page: 13294
  year: 2023
  ident: 10.1016/j.ijhydene.2025.06.109_bib3
  article-title: Multi-objective optimization of gradient porosity of gas diffusion layer and operation parameters in PEMFC based on recombination optimization compromise strategy
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.12.226
– volume: 277
  start-page: 239
  year: 2015
  ident: 10.1016/j.ijhydene.2025.06.109_bib18
  article-title: Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.11.126
– volume: 47
  start-page: 35790
  issue: 84
  year: 2022
  ident: 10.1016/j.ijhydene.2025.06.109_bib36
  article-title: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.154
– volume: 375
  year: 2024
  ident: 10.1016/j.ijhydene.2025.06.109_bib46
  article-title: A co-simulation platform and climate-adaptive optimisation for cross-scale PEMFC combined heat and power supply in buildings with semi-empirical surrogate models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124073
– year: 2013
  ident: 10.1016/j.ijhydene.2025.06.109_bib30
– year: 2021
  ident: 10.1016/j.ijhydene.2025.06.109_bib8
– volume: 179
  issue: 1
  year: 2008
  ident: 10.1016/j.ijhydene.2025.06.109_bib33
  article-title: Coolant controls of a PEM fuel cell system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.12.066
– volume: 30
  issue: 6
  year: 2019
  ident: 10.1016/j.ijhydene.2025.06.109_bib31
  article-title: Influences of ambient conditions on the performance of proton exchange membrane fuel cell using various models
  publication-title: Energy Environ
  doi: 10.1177/0958305X18802775
– volume: 179
  start-page: 252
  issue: 1
  year: 2008
  ident: 10.1016/j.ijhydene.2025.06.109_bib7
  article-title: Coolant controls of a PEM fuel cell system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.12.066
SSID ssj0017049
Score 2.486958
Snippet Thermal management of fuel cells is crucial for maintaining their efficient operation, as improper temperature regulation can significantly reduce fuel cell...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 149919
SubjectTerms Control strategy
Deep reinforcement learning
Parasitic power
PEMFC
Thermal management
Title Enhanced deep reinforcement learning-based thermal management strategy for PEMFC considering coolant system parasitic power
URI https://dx.doi.org/10.1016/j.ijhydene.2025.06.109
Volume 146
WOSCitedRecordID wos001513645300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017049
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RXtoDt8glfu3ax6pKBQiqHooauFjr9TpxFLlRmpQgfg__k5nd9XZDK0oPXCxrtQ8782V2Zjz7DSFvy0zFSpQsCEXMAixpHIARywMBqjAVWSZZqSnzP_Gjo2w8zo97vV_dWZiLOW_bbLPJF_9V1NAGwsajs7cQt5sUGuAehA5XEDtc_0nwo3ZqvupXSi0GS6WpUaWOAnY1IiYBbl46cxL08tymsOoe54at1qRxHo8-Hx5gYrqu6WmO54IrjN00AfQAicMx6UsOFlhtzbd0t0ONHkHF9Ee1PJtgcQF97PBK5PrbtHGqaG3Cs6eq-a5c66nt-FVsYPKJCxOvTXZI4wcyolQnveaevosZbgmmXpJTzomvXsGdy42GvaL5TRBittfM4DXgBfZwCaRmDe0aW1Tbf2yBLjGxy3mbFd08Bc5TDBl-qr9DdiKe5lmf7Ox_GI0_us9V3PpZ3Rt4R9Gvf6LrrSDPsjl5SB5Yl4TuGyg9Ij3VPib3PaLKJ-RnByqKoKJboKLboKIWVPQSVLQDFYVBVIOKeqCiFlTUgIo6UFENqqfky-Ho5OB9YMt2BDIOk1WQ1hn4ICytkLepFrxOqlhJFcoylnGS17xMwpKrIcsiBfdpqeqwTrisYH8JMWbyjPTbs1Y9JzTjUTUUJRcMXY-6FpGU4OGyqAKTiqXJLkm7n7GQltMeS6vMi78Lcpe8c-MWhtXlxhF5J6XC2qbG5iwAgDeMfXHr1V6Se5f_kFekv1qu1WtyV16smvPlG4u-33NGuqU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+deep+reinforcement+learning-based+thermal+management+strategy+for+PEMFC+considering+coolant+system+parasitic+power&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhang%2C+Zhi&rft.au=Yuan%2C+Weiwei&rft.au=Wang%2C+Yaxiong&rft.au=Ou%2C+Kai&rft.date=2025-07-09&rft.issn=0360-3199&rft.volume=146&rft.spage=149919&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.06.109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2025_06_109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon