Masked autoencoder for multiagent trajectories

Automatically labeling trajectories of multiple agents is key to behavioral analyses but usually requires a large amount of manual annotations. This also applies to the domain of team sport analyses. In this paper, we specifically show how pretraining transformer models improves the classification p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 114; číslo 2; s. 44
Hlavní autori: Rudolph, Yannick, Brefeld, Ulf
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2025
Springer Nature B.V
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Automatically labeling trajectories of multiple agents is key to behavioral analyses but usually requires a large amount of manual annotations. This also applies to the domain of team sport analyses. In this paper, we specifically show how pretraining transformer models improves the classification performance on tracking data from professional soccer. For this purpose, we propose a novel self-supervised masked autoencoder for multiagent trajectories to effectively learn from only a few labeled sequences. Our approach builds upon a factorized transformer architecture for multiagent trajectory data and employs a masking scheme on the level of individual agent trajectories. As a result, our model allows for a reconstruction of masked trajectory segments while being permutation equivariant with respect to the agent trajectories. In addition to experiments on soccer, we demonstrate the usefulness of the proposed pretraining approach on multiagent pose data from entomology. In contrast to related work, our approach is conceptually much simpler, does not require handcrafted features and naturally allows for permutation invariance in downstream tasks.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-024-06647-3