CFD analysis of water vapor condensation in large containments: Numerical model, verification and validation
In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensa...
Saved in:
| Published in: | Nuclear engineering and design Vol. 395; p. 111861 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier BV
15.08.2022
Elsevier |
| Subjects: | |
| ISSN: | 0029-5493, 1872-759X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensation on cold containment structures modifies the pressure load on the containment structures. On the one hand, the total pressure reduces due to the decrease of the water vapor content of the containment atmosphere. On the other hand, the concentration of hydrogen increases, which can reach locally the threshold of deflagration or detonation. A Computational Fluid Dynamics (CFD) model is developed and tested in order to predict transients of the pressure and the concentrations of gaseous species in reactor containments after a LOCA. Since the free volume of the containment of typical French PWRs is between 50,000 m3 and 80,000 m3, the CFD model requires significant simplifications. The physical model and its simplifications as well the implementation in the CEA OpenSource CFD code TrioCFD are described. Model tests are presented in two steps. In a first step, verification tests are discussed to show that the condensation model is implemented correctly in the CFD code. In a second step, the model is validated against experimental data of the International Standard Problem ISP47. In this benchmark, steady state conditions between vapor injection and condensation were reached experimentally in the MISTRA test containment of the CEA. In phase A of the benchmark, an equilibrium was achieved between water vapor injection and water vapor condensation on temperature controlled cold walls. One incondensable gas, namely air, was present in the test vessel. In phase B, a second incondensable gas was added to the containment atmosphere, namely helium. Both steady state situations were analyzed with the CFD model. The calculations represent well the experiment when the predominant condensation paths are modelled. It is shown that the pressure in the containment vessel as well as the mean mass fractions of water vapor and air, as well as of helium in phase B, are calculated in accordance to the experiment. The temperature in the containment is overestimated. Measured vertical profiles of the species concentrations are reproduced correctly. |
|---|---|
| AbstractList | In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensation on cold containment structures modifies the pressure load on the containment structures. On the one hand, the total pressure reduces due to the decrease of the water vapor content of the containment atmosphere. On the other hand, the concentration of hydrogen increases, which can reach locally the threshold of deflagration or detonation. A Computational Fluid Dynamics (CFD) model is developed and tested in order to predict transients of the pressure and the concentrations of gaseous species in reactor containments after a LOCA. Since the free volume of the containment of typical French PWRs is between 50,000 m3 and 80,000 m3, the CFD model requires significant simplifications. The physical model and its simplifications as well the implementation in the CEA OpenSource CFD code TrioCFD are described. Model tests are presented in two steps. In a first step, verification tests are discussed to show that the condensation model is implemented correctly in the CFD code. In a second step, the model is validated against experimental data of the International Standard Problem ISP47. In this benchmark, steady state conditions between vapor injection and condensation were reached experimentally in the MISTRA test containment of the CEA. In phase A of the benchmark, an equilibrium was achieved between water vapor injection and water vapor condensation on temperature controlled cold walls. One incondensable gas, namely air, was present in the test vessel. In phase B, a second incondensable gas was added to the containment atmosphere, namely helium. Both steady state situations were analyzed with the CFD model. The calculations represent well the experiment when the predominant condensation paths are modelled. It is shown that the pressure in the containment vessel as well as the mean mass fractions of water vapor and air, as well as of helium in phase B, are calculated in accordance to the experiment. The temperature in the containment is overestimated. Measured vertical profiles of the species concentrations are reproduced correctly. |
| ArticleNumber | 111861 |
| Author | Herbette, Axelle Bieder, Ulrich |
| Author_xml | – sequence: 1 givenname: Ulrich surname: Bieder fullname: Bieder, Ulrich – sequence: 2 givenname: Axelle surname: Herbette fullname: Herbette, Axelle |
| BackLink | https://cea.hal.science/cea-04083173$$DView record in HAL |
| BookMark | eNo9kUFPGzEQha2KSg2U34ClnpDY1OP1rmNuKECpFJULSNyswR7TjTZ2sDdB_Pvukoq5zLzRN-8w75gdxRSJsTMQcxDQ_lzP485RfPFU5lJIOQeARQtf2AwWWla6MU9HbCaENFWjTP2NHZeyFlMZOWP98vaaY8T-vXSFp8DfcKDM97hNmbsUPcWCQ5ci7yLvMb_QtB2wixuKQ7nkf3Ybyp3Dnm-Sp_6C70cZxsXHEUY_evWd_5Df2deAfaHT__2EPd7ePCzvqtX9r9_Lq1XlalBDVXsAbAC1N61aKNHqOvhWNaF1AYhQ6RCIvDBk2ucAz44cgpQ4Tg1pZ-oTdn7w_Yu93eZug_ndJuzs3dXKOkIrlFjUoOs9jOyPA7vN6XVHZbDrtMvjQ4qVupVGSdVMlD5QLqdSMoVPWxB2isGu7WcMdorBHmKo_wHG84Hi |
| Cites_doi | 10.1016/j.nucengdes.2006.08.008 10.1063/1.1761178 10.1016/j.nucengdes.2016.01.004 10.1016/S0029-5493(03)00014-1 10.1016/0017-9310(91)90245-A 10.1016/j.nucengdes.2009.11.033 10.1016/j.nucengdes.2012.10.009 10.1016/j.nucengdes.2017.09.007 10.1002/zamm.19510310704 10.2172/4205348 10.1016/j.nucengdes.2014.07.011 10.1016/j.nucengdes.2007.10.003 10.1080/00295450.2020.1731406 10.1016/j.nucengdes.2013.02.002 10.3390/fluids6030100 10.1016/j.nucengdes.2015.06.001 10.1016/j.ijhydene.2018.08.108 |
| ContentType | Journal Article |
| Copyright | Copyright Elsevier BV Aug 15, 2022 Copyright |
| Copyright_xml | – notice: Copyright Elsevier BV Aug 15, 2022 – notice: Copyright |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 KR7 L7M SOI 1XC VOOES |
| DOI | 10.1016/j.nucengdes.2022.111861 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1872-759X |
| ExternalDocumentID | oai:HAL:cea-04083173v1 10_1016_j_nucengdes_2022_111861 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K TN5 UHS WUQ XPP ZMT ~02 ~G- ~HD 7SP 7ST 7TB 8FD AGCQF C1K FR3 KR7 L7M SOI 1XC VOOES |
| ID | FETCH-LOGICAL-c314t-3d11a51a7d964840673fd645f6cf1eea47ffeed09e96bf1bceca122a1bc5e7c93 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823028000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5493 |
| IngestDate | Tue Oct 14 20:29:50 EDT 2025 Wed Aug 13 06:49:59 EDT 2025 Sat Nov 29 07:30:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CFD Validation ISP47 Wall condensation Containment flow |
| Language | English |
| License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c314t-3d11a51a7d964840673fd645f6cf1eea47ffeed09e96bf1bceca122a1bc5e7c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://cea.hal.science/cea-04083173 |
| PQID | 2762942451 |
| PQPubID | 2045424 |
| ParticipantIDs | hal_primary_oai_HAL_cea_04083173v1 proquest_journals_2762942451 crossref_primary_10_1016_j_nucengdes_2022_111861 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-15 |
| PublicationDateYYYYMMDD | 2022-08-15 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Nuclear engineering and design |
| PublicationYear | 2022 |
| Publisher | Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier BV – name: Elsevier |
| References | Reichardt (10.1016/j.nucengdes.2022.111861_b0115) 1951; 31 Ambrosini (10.1016/j.nucengdes.2022.111861_b0005) 2008 Harlow (10.1016/j.nucengdes.2022.111861_b9000) 1965; 8 Punetha (10.1016/j.nucengdes.2022.111861_b0110) 2017; 324 10.1016/j.nucengdes.2022.111861_b0050 Yadav (10.1016/j.nucengdes.2022.111861_b0150) 2016; 300 10.1016/j.nucengdes.2022.111861_b0095 10.1016/j.nucengdes.2022.111861_b0070 Patankar (10.1016/j.nucengdes.2022.111861_b0100) 1980 Angeli (10.1016/j.nucengdes.2022.111861_b0010) 2015 10.1016/j.nucengdes.2022.111861_b0055 Studer (10.1016/j.nucengdes.2022.111861_b0130) 2007; 237 10.1016/j.nucengdes.2022.111861_b9005 Elmo (10.1016/j.nucengdes.2022.111861_b0045) 2003; 222 Bieder (10.1016/j.nucengdes.2022.111861_b0020) 2021; 152 10.1016/j.nucengdes.2022.111861_b0075 Saikali (10.1016/j.nucengdes.2022.111861_b0120) 2019; 44 Dehbi (10.1016/j.nucengdes.2022.111861_b0035) 2013; 258 Studer (10.1016/j.nucengdes.2022.111861_b0135) 2012; 253 Ishay (10.1016/j.nucengdes.2022.111861_b0060) 2015; 292 Angeli (10.1016/j.nucengdes.2022.111861_b0015) 2018 Kader (10.1016/j.nucengdes.2022.111861_b0065) 1991; 34 Bird (10.1016/j.nucengdes.2022.111861_b0025) 1960 Kelm (10.1016/j.nucengdes.2022.111861_b0080) 2021; 6 10.1016/j.nucengdes.2022.111861_b0085 10.1016/j.nucengdes.2022.111861_b0140 Povilaitis (10.1016/j.nucengdes.2022.111861_b0105) 2014; 278 Ducros (10.1016/j.nucengdes.2022.111861_b0040) 2010; 240 10.1016/j.nucengdes.2022.111861_b0125 10.1016/j.nucengdes.2022.111861_b0145 Bucci (10.1016/j.nucengdes.2022.111861_b0030) 2008; 238 |
| References_xml | – volume: 237 start-page: 536 year: 2007 ident: 10.1016/j.nucengdes.2022.111861_b0130 article-title: International standrad problem on containment thermal-hydraulics ISP47 Step 1 - Results from the MISTRA exercise publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2006.08.008 – volume: 8 start-page: 2182 year: 1965 ident: 10.1016/j.nucengdes.2022.111861_b9000 article-title: Numerical calculation of time dependent viscous incompressible flow with free surface publication-title: Physics of Fluids doi: 10.1063/1.1761178 – ident: 10.1016/j.nucengdes.2022.111861_b0095 – volume: 300 start-page: 181 year: 2016 ident: 10.1016/j.nucengdes.2022.111861_b0150 article-title: An integrated approach to steam condensation studies inside reactor containments: A review publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2016.01.004 – volume: 222 start-page: 117 issue: 2-3 year: 2003 ident: 10.1016/j.nucengdes.2022.111861_b0045 article-title: Low Mach number model for compressible flows and application to HTR publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(03)00014-1 – ident: 10.1016/j.nucengdes.2022.111861_b0070 – volume: 34 start-page: 2837 issue: 11 year: 1991 ident: 10.1016/j.nucengdes.2022.111861_b0065 article-title: Heat and Mass transfer in Pressure-Gradient boundary layers publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(91)90245-A – volume: 240 start-page: 2123 issue: 9 year: 2010 ident: 10.1016/j.nucengdes.2022.111861_b0040 article-title: Verification and validation considerations regarding the qualification of numerical schemes for LES for dilution problems publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2009.11.033 – volume: 253 start-page: 406 year: 2012 ident: 10.1016/j.nucengdes.2022.111861_b0135 article-title: Interaction of a light gas stratified layer with an air jet coming from below: largescale experiments and scaling issues publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2012.10.009 – year: 1960 ident: 10.1016/j.nucengdes.2022.111861_b0025 – volume: 324 start-page: 280 year: 2017 ident: 10.1016/j.nucengdes.2022.111861_b0110 article-title: A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.09.007 – volume: 31 start-page: 208 year: 1951 ident: 10.1016/j.nucengdes.2022.111861_b0115 article-title: Vollständige Darstelling der turbulenten Geschwindigkeitsverteilung in glatten Leitungen publication-title: Zeitschrift für Angewandte Mathematik und Mechanik doi: 10.1002/zamm.19510310704 – ident: 10.1016/j.nucengdes.2022.111861_b9005 – year: 1980 ident: 10.1016/j.nucengdes.2022.111861_b0100 – ident: 10.1016/j.nucengdes.2022.111861_b0055 doi: 10.2172/4205348 – year: 2015 ident: 10.1016/j.nucengdes.2022.111861_b0010 article-title: Overview of the TrioCFD code: main features, V&V procedures and typical applications to nuclear engineering – start-page: 181 year: 2018 ident: 10.1016/j.nucengdes.2022.111861_b0015 article-title: FVCA8 Benchmark for the Stokes and Navier-Stokes Equations with the TrioCFD Code—Benchmark Session – volume: 278 start-page: 86 year: 2014 ident: 10.1016/j.nucengdes.2022.111861_b0105 article-title: Validation of special nodalisation features for lumped-parameterinjection modelling based on MISTRA facility tests from ISP-47 and SARNET publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.07.011 – ident: 10.1016/j.nucengdes.2022.111861_b0075 – volume: 238 start-page: 958 issue: 4 year: 2008 ident: 10.1016/j.nucengdes.2022.111861_b0030 article-title: Prediction of transpiration effects on heat and mass transfer by different turbulence models publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2007.10.003 – ident: 10.1016/j.nucengdes.2022.111861_b0125 doi: 10.1080/00295450.2020.1731406 – ident: 10.1016/j.nucengdes.2022.111861_b0050 – volume: 258 start-page: 199 year: 2013 ident: 10.1016/j.nucengdes.2022.111861_b0035 article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.02.002 – volume: 6 start-page: 100 issue: 3 year: 2021 ident: 10.1016/j.nucengdes.2022.111861_b0080 article-title: The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport publication-title: Fluids doi: 10.3390/fluids6030100 – volume: 152 issue: 2021 year: 2021 ident: 10.1016/j.nucengdes.2022.111861_b0020 article-title: Investigation of pressure loss and velocity distribution in fuel assemblies with wire-wrapped rods by using RANS and LES with wall functions publication-title: Ann. Nucl. Energy – ident: 10.1016/j.nucengdes.2022.111861_b0140 – ident: 10.1016/j.nucengdes.2022.111861_b0085 – volume: 292 start-page: 133 year: 2015 ident: 10.1016/j.nucengdes.2022.111861_b0060 article-title: Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2015.06.001 – ident: 10.1016/j.nucengdes.2022.111861_b0145 – volume: 44 start-page: 8856 issue: 17 year: 2019 ident: 10.1016/j.nucengdes.2022.111861_b0120 article-title: Highly resolved large eddy simulations of a binary mixture flow in a cavity with two vents: Influence of the computational domain publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.108 – year: 2008 ident: 10.1016/j.nucengdes.2022.111861_b0005 article-title: Comparison and Analysis of the Condensation Benchmark Results |
| SSID | ssj0000092 |
| Score | 2.3358302 |
| Snippet | In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 111861 |
| SubjectTerms | Air temperature Atmosphere Benchmarks Computational fluid dynamics Computer applications Containment Containment vessels Deflagration Detonation Fluid dynamics Fluid mechanics Helium Hydrodynamics Hydrogen Injection International standards Loss of coolant accidents Mathematical models Mechanics Model testing Numerical models Physics Pressure Pressurized water reactors Reactors Reproduction (biology) Steady state Temperature control Verification Water analysis Water vapor |
| Title | CFD analysis of water vapor condensation in large containments: Numerical model, verification and validation |
| URI | https://www.proquest.com/docview/2762942451 https://cea.hal.science/cea-04083173 |
| Volume | 395 |
| WOSCitedRecordID | wos000823028000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdG2cN4mPYpGDBZ095Yqjhx4nhvhYG6aar2AFLfIiexR6sqIChd_3zu7Hy4bNLGw16iKHLOru_Xs-_8yx0hH-PMZFVRFYEwSRRwEYZBkXIVGDCMCgtbSeOKTYjJJJtO5Y_muODWlhMQdZ2t1_L6v6oanoGy8dPZR6i7EwoP4B6UDldQO1z_SfEnZ1-OlJdq5JfCPIgrBRtt5JiDnXEEHox0LJAHbunqDS3AEuQmd-4YZ-Hq5KAWYBaQU-RexFg7jHhW9Vqdt1_xlliG4kj3WQ5t62qDJ3I805VDysUC-ukC0mNQMTKPrL1a44mCH5MAdxZzxCa-nY1kAJ5n7NvZWCaepQQbm7k07L8ZcRdPmA9rAHf9E0Y4xD6G_RubabMfLGcdybDlr83zTlCOgnInaItsRyKR2YBsj76eTr95TpOMWmIQ_oYNVuAfx7Sxp9m6REbtg4Xd7lbOX5DnjZtBRw4eL8kTXb8iO17yyddkAUChLVDolaEWKNQChfpAobOaWqBQHyifaQcTamHyifogAckV7UHyhlycnZ6fjIOm9kZQxowvg7hiTCVMiUqmPONYzshUKU9MWhqmteLCGNhehVLLtDCsKHWpWBQpuEu0KGX8lgzqq1rvEiq0CAumJDMq5oXJMiNARAJ-rABvQvM9Erazl1-7FCv5X3S3Rz7ALHetMUX6ePQ9L7XKYVECEyPiFTQ6aJWQN_9PEAKLv8TTfvbu8d3uk2c92g_IYHlzpw_J03K1nN3evG9wdA-jOJO5 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+of+water+vapor+condensation+in+large+containments%3A+Numerical+model%2C+verification+and+validation&rft.jtitle=Nuclear+engineering+and+design&rft.au=Bieder%2C+Ulrich&rft.au=Herbette%2C+Axelle&rft.date=2022-08-15&rft.issn=0029-5493&rft.volume=395&rft.spage=111861&rft_id=info:doi/10.1016%2Fj.nucengdes.2022.111861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nucengdes_2022_111861 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |