CFD analysis of water vapor condensation in large containments: Numerical model, verification and validation

In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensa...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and design Vol. 395; p. 111861
Main Authors: Bieder, Ulrich, Herbette, Axelle
Format: Journal Article
Language:English
Published: Amsterdam Elsevier BV 15.08.2022
Elsevier
Subjects:
ISSN:0029-5493, 1872-759X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensation on cold containment structures modifies the pressure load on the containment structures. On the one hand, the total pressure reduces due to the decrease of the water vapor content of the containment atmosphere. On the other hand, the concentration of hydrogen increases, which can reach locally the threshold of deflagration or detonation. A Computational Fluid Dynamics (CFD) model is developed and tested in order to predict transients of the pressure and the concentrations of gaseous species in reactor containments after a LOCA. Since the free volume of the containment of typical French PWRs is between 50,000 m3 and 80,000 m3, the CFD model requires significant simplifications. The physical model and its simplifications as well the implementation in the CEA OpenSource CFD code TrioCFD are described. Model tests are presented in two steps. In a first step, verification tests are discussed to show that the condensation model is implemented correctly in the CFD code. In a second step, the model is validated against experimental data of the International Standard Problem ISP47. In this benchmark, steady state conditions between vapor injection and condensation were reached experimentally in the MISTRA test containment of the CEA. In phase A of the benchmark, an equilibrium was achieved between water vapor injection and water vapor condensation on temperature controlled cold walls. One incondensable gas, namely air, was present in the test vessel. In phase B, a second incondensable gas was added to the containment atmosphere, namely helium. Both steady state situations were analyzed with the CFD model. The calculations represent well the experiment when the predominant condensation paths are modelled. It is shown that the pressure in the containment vessel as well as the mean mass fractions of water vapor and air, as well as of helium in phase B, are calculated in accordance to the experiment. The temperature in the containment is overestimated. Measured vertical profiles of the species concentrations are reproduced correctly.
AbstractList In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the containment building. Increasing pressure and the risk of hydrogen deflagration can threaten the containment integrity. Water vapor condensation on cold containment structures modifies the pressure load on the containment structures. On the one hand, the total pressure reduces due to the decrease of the water vapor content of the containment atmosphere. On the other hand, the concentration of hydrogen increases, which can reach locally the threshold of deflagration or detonation. A Computational Fluid Dynamics (CFD) model is developed and tested in order to predict transients of the pressure and the concentrations of gaseous species in reactor containments after a LOCA. Since the free volume of the containment of typical French PWRs is between 50,000 m3 and 80,000 m3, the CFD model requires significant simplifications. The physical model and its simplifications as well the implementation in the CEA OpenSource CFD code TrioCFD are described. Model tests are presented in two steps. In a first step, verification tests are discussed to show that the condensation model is implemented correctly in the CFD code. In a second step, the model is validated against experimental data of the International Standard Problem ISP47. In this benchmark, steady state conditions between vapor injection and condensation were reached experimentally in the MISTRA test containment of the CEA. In phase A of the benchmark, an equilibrium was achieved between water vapor injection and water vapor condensation on temperature controlled cold walls. One incondensable gas, namely air, was present in the test vessel. In phase B, a second incondensable gas was added to the containment atmosphere, namely helium. Both steady state situations were analyzed with the CFD model. The calculations represent well the experiment when the predominant condensation paths are modelled. It is shown that the pressure in the containment vessel as well as the mean mass fractions of water vapor and air, as well as of helium in phase B, are calculated in accordance to the experiment. The temperature in the containment is overestimated. Measured vertical profiles of the species concentrations are reproduced correctly.
ArticleNumber 111861
Author Herbette, Axelle
Bieder, Ulrich
Author_xml – sequence: 1
  givenname: Ulrich
  surname: Bieder
  fullname: Bieder, Ulrich
– sequence: 2
  givenname: Axelle
  surname: Herbette
  fullname: Herbette, Axelle
BackLink https://cea.hal.science/cea-04083173$$DView record in HAL
BookMark eNo9kUFPGzEQha2KSg2U34ClnpDY1OP1rmNuKECpFJULSNyswR7TjTZ2sDdB_Pvukoq5zLzRN-8w75gdxRSJsTMQcxDQ_lzP485RfPFU5lJIOQeARQtf2AwWWla6MU9HbCaENFWjTP2NHZeyFlMZOWP98vaaY8T-vXSFp8DfcKDM97hNmbsUPcWCQ5ci7yLvMb_QtB2wixuKQ7nkf3Ybyp3Dnm-Sp_6C70cZxsXHEUY_evWd_5Df2deAfaHT__2EPd7ePCzvqtX9r9_Lq1XlalBDVXsAbAC1N61aKNHqOvhWNaF1AYhQ6RCIvDBk2ucAz44cgpQ4Tg1pZ-oTdn7w_Yu93eZug_ndJuzs3dXKOkIrlFjUoOs9jOyPA7vN6XVHZbDrtMvjQ4qVupVGSdVMlD5QLqdSMoVPWxB2isGu7WcMdorBHmKo_wHG84Hi
Cites_doi 10.1016/j.nucengdes.2006.08.008
10.1063/1.1761178
10.1016/j.nucengdes.2016.01.004
10.1016/S0029-5493(03)00014-1
10.1016/0017-9310(91)90245-A
10.1016/j.nucengdes.2009.11.033
10.1016/j.nucengdes.2012.10.009
10.1016/j.nucengdes.2017.09.007
10.1002/zamm.19510310704
10.2172/4205348
10.1016/j.nucengdes.2014.07.011
10.1016/j.nucengdes.2007.10.003
10.1080/00295450.2020.1731406
10.1016/j.nucengdes.2013.02.002
10.3390/fluids6030100
10.1016/j.nucengdes.2015.06.001
10.1016/j.ijhydene.2018.08.108
ContentType Journal Article
Copyright Copyright Elsevier BV Aug 15, 2022
Copyright
Copyright_xml – notice: Copyright Elsevier BV Aug 15, 2022
– notice: Copyright
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
KR7
L7M
SOI
1XC
VOOES
DOI 10.1016/j.nucengdes.2022.111861
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-759X
ExternalDocumentID oai:HAL:cea-04083173v1
10_1016_j_nucengdes_2022_111861
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~02
~G-
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
1XC
VOOES
ID FETCH-LOGICAL-c314t-3d11a51a7d964840673fd645f6cf1eea47ffeed09e96bf1bceca122a1bc5e7c93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823028000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5493
IngestDate Tue Oct 14 20:29:50 EDT 2025
Wed Aug 13 06:49:59 EDT 2025
Sat Nov 29 07:30:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
Validation
ISP47
Wall condensation
Containment flow
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-3d11a51a7d964840673fd645f6cf1eea47ffeed09e96bf1bceca122a1bc5e7c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://cea.hal.science/cea-04083173
PQID 2762942451
PQPubID 2045424
ParticipantIDs hal_primary_oai_HAL_cea_04083173v1
proquest_journals_2762942451
crossref_primary_10_1016_j_nucengdes_2022_111861
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nuclear engineering and design
PublicationYear 2022
Publisher Elsevier BV
Elsevier
Publisher_xml – name: Elsevier BV
– name: Elsevier
References Reichardt (10.1016/j.nucengdes.2022.111861_b0115) 1951; 31
Ambrosini (10.1016/j.nucengdes.2022.111861_b0005) 2008
Harlow (10.1016/j.nucengdes.2022.111861_b9000) 1965; 8
Punetha (10.1016/j.nucengdes.2022.111861_b0110) 2017; 324
10.1016/j.nucengdes.2022.111861_b0050
Yadav (10.1016/j.nucengdes.2022.111861_b0150) 2016; 300
10.1016/j.nucengdes.2022.111861_b0095
10.1016/j.nucengdes.2022.111861_b0070
Patankar (10.1016/j.nucengdes.2022.111861_b0100) 1980
Angeli (10.1016/j.nucengdes.2022.111861_b0010) 2015
10.1016/j.nucengdes.2022.111861_b0055
Studer (10.1016/j.nucengdes.2022.111861_b0130) 2007; 237
10.1016/j.nucengdes.2022.111861_b9005
Elmo (10.1016/j.nucengdes.2022.111861_b0045) 2003; 222
Bieder (10.1016/j.nucengdes.2022.111861_b0020) 2021; 152
10.1016/j.nucengdes.2022.111861_b0075
Saikali (10.1016/j.nucengdes.2022.111861_b0120) 2019; 44
Dehbi (10.1016/j.nucengdes.2022.111861_b0035) 2013; 258
Studer (10.1016/j.nucengdes.2022.111861_b0135) 2012; 253
Ishay (10.1016/j.nucengdes.2022.111861_b0060) 2015; 292
Angeli (10.1016/j.nucengdes.2022.111861_b0015) 2018
Kader (10.1016/j.nucengdes.2022.111861_b0065) 1991; 34
Bird (10.1016/j.nucengdes.2022.111861_b0025) 1960
Kelm (10.1016/j.nucengdes.2022.111861_b0080) 2021; 6
10.1016/j.nucengdes.2022.111861_b0085
10.1016/j.nucengdes.2022.111861_b0140
Povilaitis (10.1016/j.nucengdes.2022.111861_b0105) 2014; 278
Ducros (10.1016/j.nucengdes.2022.111861_b0040) 2010; 240
10.1016/j.nucengdes.2022.111861_b0125
10.1016/j.nucengdes.2022.111861_b0145
Bucci (10.1016/j.nucengdes.2022.111861_b0030) 2008; 238
References_xml – volume: 237
  start-page: 536
  year: 2007
  ident: 10.1016/j.nucengdes.2022.111861_b0130
  article-title: International standrad problem on containment thermal-hydraulics ISP47 Step 1 - Results from the MISTRA exercise
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2006.08.008
– volume: 8
  start-page: 2182
  year: 1965
  ident: 10.1016/j.nucengdes.2022.111861_b9000
  article-title: Numerical calculation of time dependent viscous incompressible flow with free surface
  publication-title: Physics of Fluids
  doi: 10.1063/1.1761178
– ident: 10.1016/j.nucengdes.2022.111861_b0095
– volume: 300
  start-page: 181
  year: 2016
  ident: 10.1016/j.nucengdes.2022.111861_b0150
  article-title: An integrated approach to steam condensation studies inside reactor containments: A review
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2016.01.004
– volume: 222
  start-page: 117
  issue: 2-3
  year: 2003
  ident: 10.1016/j.nucengdes.2022.111861_b0045
  article-title: Low Mach number model for compressible flows and application to HTR
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(03)00014-1
– ident: 10.1016/j.nucengdes.2022.111861_b0070
– volume: 34
  start-page: 2837
  issue: 11
  year: 1991
  ident: 10.1016/j.nucengdes.2022.111861_b0065
  article-title: Heat and Mass transfer in Pressure-Gradient boundary layers
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(91)90245-A
– volume: 240
  start-page: 2123
  issue: 9
  year: 2010
  ident: 10.1016/j.nucengdes.2022.111861_b0040
  article-title: Verification and validation considerations regarding the qualification of numerical schemes for LES for dilution problems
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2009.11.033
– volume: 253
  start-page: 406
  year: 2012
  ident: 10.1016/j.nucengdes.2022.111861_b0135
  article-title: Interaction of a light gas stratified layer with an air jet coming from below: largescale experiments and scaling issues
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2012.10.009
– year: 1960
  ident: 10.1016/j.nucengdes.2022.111861_b0025
– volume: 324
  start-page: 280
  year: 2017
  ident: 10.1016/j.nucengdes.2022.111861_b0110
  article-title: A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.09.007
– volume: 31
  start-page: 208
  year: 1951
  ident: 10.1016/j.nucengdes.2022.111861_b0115
  article-title: Vollständige Darstelling der turbulenten Geschwindigkeitsverteilung in glatten Leitungen
  publication-title: Zeitschrift für Angewandte Mathematik und Mechanik
  doi: 10.1002/zamm.19510310704
– ident: 10.1016/j.nucengdes.2022.111861_b9005
– year: 1980
  ident: 10.1016/j.nucengdes.2022.111861_b0100
– ident: 10.1016/j.nucengdes.2022.111861_b0055
  doi: 10.2172/4205348
– year: 2015
  ident: 10.1016/j.nucengdes.2022.111861_b0010
  article-title: Overview of the TrioCFD code: main features, V&V procedures and typical applications to nuclear engineering
– start-page: 181
  year: 2018
  ident: 10.1016/j.nucengdes.2022.111861_b0015
  article-title: FVCA8 Benchmark for the Stokes and Navier-Stokes Equations with the TrioCFD Code—Benchmark Session
– volume: 278
  start-page: 86
  year: 2014
  ident: 10.1016/j.nucengdes.2022.111861_b0105
  article-title: Validation of special nodalisation features for lumped-parameterinjection modelling based on MISTRA facility tests from ISP-47 and SARNET
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.07.011
– ident: 10.1016/j.nucengdes.2022.111861_b0075
– volume: 238
  start-page: 958
  issue: 4
  year: 2008
  ident: 10.1016/j.nucengdes.2022.111861_b0030
  article-title: Prediction of transpiration effects on heat and mass transfer by different turbulence models
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2007.10.003
– ident: 10.1016/j.nucengdes.2022.111861_b0125
  doi: 10.1080/00295450.2020.1731406
– ident: 10.1016/j.nucengdes.2022.111861_b0050
– volume: 258
  start-page: 199
  year: 2013
  ident: 10.1016/j.nucengdes.2022.111861_b0035
  article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.02.002
– volume: 6
  start-page: 100
  issue: 3
  year: 2021
  ident: 10.1016/j.nucengdes.2022.111861_b0080
  article-title: The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport
  publication-title: Fluids
  doi: 10.3390/fluids6030100
– volume: 152
  issue: 2021
  year: 2021
  ident: 10.1016/j.nucengdes.2022.111861_b0020
  article-title: Investigation of pressure loss and velocity distribution in fuel assemblies with wire-wrapped rods by using RANS and LES with wall functions
  publication-title: Ann. Nucl. Energy
– ident: 10.1016/j.nucengdes.2022.111861_b0140
– ident: 10.1016/j.nucengdes.2022.111861_b0085
– volume: 292
  start-page: 133
  year: 2015
  ident: 10.1016/j.nucengdes.2022.111861_b0060
  article-title: Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2015.06.001
– ident: 10.1016/j.nucengdes.2022.111861_b0145
– volume: 44
  start-page: 8856
  issue: 17
  year: 2019
  ident: 10.1016/j.nucengdes.2022.111861_b0120
  article-title: Highly resolved large eddy simulations of a binary mixture flow in a cavity with two vents: Influence of the computational domain
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.108
– year: 2008
  ident: 10.1016/j.nucengdes.2022.111861_b0005
  article-title: Comparison and Analysis of the Condensation Benchmark Results
SSID ssj0000092
Score 2.3358302
Snippet In the event of a loss of coolant accident (LOCA) in a Pressurized Water Reactor (PWR), large quantities of water vapor and hydrogen might be released into the...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 111861
SubjectTerms Air temperature
Atmosphere
Benchmarks
Computational fluid dynamics
Computer applications
Containment
Containment vessels
Deflagration
Detonation
Fluid dynamics
Fluid mechanics
Helium
Hydrodynamics
Hydrogen
Injection
International standards
Loss of coolant accidents
Mathematical models
Mechanics
Model testing
Numerical models
Physics
Pressure
Pressurized water reactors
Reactors
Reproduction (biology)
Steady state
Temperature control
Verification
Water analysis
Water vapor
Title CFD analysis of water vapor condensation in large containments: Numerical model, verification and validation
URI https://www.proquest.com/docview/2762942451
https://cea.hal.science/cea-04083173
Volume 395
WOSCitedRecordID wos000823028000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdG2cN4mPYpGDBZ095Yqjhx4nhvhYG6aar2AFLfIiexR6sqIChd_3zu7Hy4bNLGw16iKHLOru_Xs-_8yx0hH-PMZFVRFYEwSRRwEYZBkXIVGDCMCgtbSeOKTYjJJJtO5Y_muODWlhMQdZ2t1_L6v6oanoGy8dPZR6i7EwoP4B6UDldQO1z_SfEnZ1-OlJdq5JfCPIgrBRtt5JiDnXEEHox0LJAHbunqDS3AEuQmd-4YZ-Hq5KAWYBaQU-RexFg7jHhW9Vqdt1_xlliG4kj3WQ5t62qDJ3I805VDysUC-ukC0mNQMTKPrL1a44mCH5MAdxZzxCa-nY1kAJ5n7NvZWCaepQQbm7k07L8ZcRdPmA9rAHf9E0Y4xD6G_RubabMfLGcdybDlr83zTlCOgnInaItsRyKR2YBsj76eTr95TpOMWmIQ_oYNVuAfx7Sxp9m6REbtg4Xd7lbOX5DnjZtBRw4eL8kTXb8iO17yyddkAUChLVDolaEWKNQChfpAobOaWqBQHyifaQcTamHyifogAckV7UHyhlycnZ6fjIOm9kZQxowvg7hiTCVMiUqmPONYzshUKU9MWhqmteLCGNhehVLLtDCsKHWpWBQpuEu0KGX8lgzqq1rvEiq0CAumJDMq5oXJMiNARAJ-rABvQvM9Erazl1-7FCv5X3S3Rz7ALHetMUX6ePQ9L7XKYVECEyPiFTQ6aJWQN_9PEAKLv8TTfvbu8d3uk2c92g_IYHlzpw_J03K1nN3evG9wdA-jOJO5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+of+water+vapor+condensation+in+large+containments%3A+Numerical+model%2C+verification+and+validation&rft.jtitle=Nuclear+engineering+and+design&rft.au=Bieder%2C+Ulrich&rft.au=Herbette%2C+Axelle&rft.date=2022-08-15&rft.issn=0029-5493&rft.volume=395&rft.spage=111861&rft_id=info:doi/10.1016%2Fj.nucengdes.2022.111861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nucengdes_2022_111861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon