ON THE CONVEXITY OF VALUE FUNCTIONS FOR A CERTAIN CLASS OF STOCHASTIC DYNAMIC PROGRAMMING PROBLEM

It is a common practice in stochastic dynamic programming problems to assume a priori that the value function is either concave or convex and later verify this assumption after the value function has been identified. It is often a difficult task to establish the concavity or convexity of the value f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stochastic analysis and applications Ročník 20; číslo 4; s. 783 - 789
Hlavní autoři: Clark, Steven P., Kiessler, Peter C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Taylor & Francis Group 28.08.2002
Taylor & Francis
Témata:
ISSN:0736-2994, 1532-9356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is a common practice in stochastic dynamic programming problems to assume a priori that the value function is either concave or convex and later verify this assumption after the value function has been identified. It is often a difficult task to establish the concavity or convexity of the value function directly. In this paper, we prove that the value function of a certain type of infinite horizon stochastic dynamic programming problem is convex. This type of value function arises frequently in economic modeling.
ISSN:0736-2994
1532-9356
DOI:10.1081/SAP-120006107