MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm
Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be N...
Uložené v:
| Vydané v: | Machine learning Ročník 112; číslo 1; s. 99 - 129 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!