Constructing generative logical models for optimisation problems using domain knowledge

In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest is in problems that have the following characteristics: (a) optimal, or even near-optimal solutions are very rare; (b) it is expensive to obta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 109; číslo 7; s. 1371 - 1392
Hlavní autoři: Srinivasan, Ashwin, Vig, Lovekesh, Shroff, Gautam
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest is in problems that have the following characteristics: (a) optimal, or even near-optimal solutions are very rare; (b) it is expensive to obtain the value of the objective function for large numbers of data instances; and (c) there is domain knowledge in the form of experience, rules-of-thumb, constraints and the like, which is difficult to translate into the usual constraints for numerical optimisation procedures. Here we investigate the use of Inductive Logic Programming (ILP) to construct models within a procedure that progressively attempts to increase the number of near-optimal solutions. Using ILP in this manner requires a change in focus from discriminatory models (the usual staple for ILP) to generative models. Using controlled datasets, we investigate the use of probability-sampling of solutions based on the estimated cost of clauses found using ILP. Specifically, we compare the results obtained against: (a) simple random sampling; and (b) generative deep network models that use a low-level encoding and automatically construct higher-level features. Our results suggest: (1) Against each of the alternatives, probability-sampling from ILP-constructed models contain more near-optimal solutions; (2) The key to the effectiveness of ILP-constructed models is the availability of domain knowledge. We also demonstrate the use of ILP in this manner on two real-world problems from the area of drug-design (predicting solubility and binding affinity), using domain knowledge of chemical ring structures and functional groups. Taken together, our results suggest that generative modelling using ILP can be very effective for optimisation problems where: (a) the number of training instances to be used is restricted, and (b) there is domain knowledge relevant to low-cost solutions.
AbstractList In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest is in problems that have the following characteristics: (a) optimal, or even near-optimal solutions are very rare; (b) it is expensive to obtain the value of the objective function for large numbers of data instances; and (c) there is domain knowledge in the form of experience, rules-of-thumb, constraints and the like, which is difficult to translate into the usual constraints for numerical optimisation procedures. Here we investigate the use of Inductive Logic Programming (ILP) to construct models within a procedure that progressively attempts to increase the number of near-optimal solutions. Using ILP in this manner requires a change in focus from discriminatory models (the usual staple for ILP) to generative models. Using controlled datasets, we investigate the use of probability-sampling of solutions based on the estimated cost of clauses found using ILP. Specifically, we compare the results obtained against: (a) simple random sampling; and (b) generative deep network models that use a low-level encoding and automatically construct higher-level features. Our results suggest: (1) Against each of the alternatives, probability-sampling from ILP-constructed models contain more near-optimal solutions; (2) The key to the effectiveness of ILP-constructed models is the availability of domain knowledge. We also demonstrate the use of ILP in this manner on two real-world problems from the area of drug-design (predicting solubility and binding affinity), using domain knowledge of chemical ring structures and functional groups. Taken together, our results suggest that generative modelling using ILP can be very effective for optimisation problems where: (a) the number of training instances to be used is restricted, and (b) there is domain knowledge relevant to low-cost solutions.
Author Vig, Lovekesh
Srinivasan, Ashwin
Shroff, Gautam
Author_xml – sequence: 1
  givenname: Ashwin
  orcidid: 0000-0002-4911-0038
  surname: Srinivasan
  fullname: Srinivasan, Ashwin
  email: ashwin@goa.bits-pilani.ac.in
  organization: Department of Computer Science and Information Systems, BITS-Pilani
– sequence: 2
  givenname: Lovekesh
  surname: Vig
  fullname: Vig, Lovekesh
  organization: TCS Research
– sequence: 3
  givenname: Gautam
  surname: Shroff
  fullname: Shroff, Gautam
  organization: TCS Research
BookMark eNp9kE1LxDAQhoOs4O7qH_AU8FzNd5ujLH7BghfFY2jTaenaJmvS6vrvjVbwJnMYZuZ9ZoZ3hRbOO0DonJJLSkh-FSnRWmSE6ozIQrDscISWVOY8lUou0JIUhcwUZfIErWLcEUKYKtQSvWy8i2OY7Ni5FrfgIJRj9w64921nyx4PvoY-4sYH7PdjN3Qxzb3D--CrHoaIp_hN1n4oO4dfnf_ooW7hFB03ZR_h7Dev0fPtzdPmPts-3j1srreZ5VSMGZeqrkpVaLBQ1baoSAorQELDeKOUrSVlVZXT3FaaNTWjylKldSmK1FE5X6OLeW_6522COJqdn4JLJw0TTHDBc6aTis0qG3yMARqzD91Qhk9Difk20MwGmmSg-THQHBLEZygmsWsh_K3-h_oCVUZ4aw
Cites_doi 10.1007/BF03037232
10.1007/s10994-009-5114-x
10.1007/s10994-015-5494-z
10.1023/A:1013500812258
10.1021/ci034184n
10.1016/j.sorms.2012.08.002
10.1016/0743-1066(94)90035-3
10.1007/s10472-009-9133-x
10.1016/j.ejor.2010.11.008
10.1016/j.ejor.2006.10.034
10.1023/A:1010980106294
10.1007/978-3-642-83189-8
10.1038/nature09107
10.1016/B978-1-55860-247-2.50048-6
10.1007/978-3-319-58694-6_25
10.1007/978-3-642-33275-3_2
10.1007/978-3-540-85928-4_14
10.1016/B978-1-55860-200-7.50078-7
10.1007/3540635149_56
10.1007/978-3-319-99960-9_2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-019-05842-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1392
ExternalDocumentID 10_1007_s10994_019_05842_x
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: EMR/2016/002766
  funderid: http://dx.doi.org/10.13039/501100001843
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c314t-356dba689ecebdc8b0b0bc4e5ef23f66cd512bb717cb92fd216c1699a487cb673
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 23:29:45 EST 2025
Sat Nov 29 01:43:27 EST 2025
Fri Feb 21 02:28:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Inductive logic programming
Generative models
Domain knowledge guided optimisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-356dba689ecebdc8b0b0bc4e5ef23f66cd512bb717cb92fd216c1699a487cb673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4911-0038
OpenAccessLink http://dx.doi.org/10.1007/s10994-019-05842-x
PQID 2424343729
PQPubID 54194
PageCount 22
ParticipantIDs proquest_journals_2424343729
crossref_primary_10_1007_s10994_019_05842_x
springer_journals_10_1007_s10994_019_05842_x
PublicationCentury 2000
PublicationDate 20200700
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Muggleton, Raedt (CR21) 1994; 19,20
Specia, Srinivasan, Joshi, Ramakrishnan, Nunes (CR32) 2009; 76
D’Ariano, Pacciarelli, Pranzo (CR6) 2007; 183
Harrod (CR14) 2010; 17
Riguzzi, Swift (CR26) 2011; 11
CR16
CR38
CR37
Riguzzi (CR25) 2018
CR36
CR13
CR34
CR11
CR33
Jouglet, Carlier (CR17) 2011; 212
CR31
CR30
CR2
CR4
Gamo, Sanz, Vidal, de Cozar, Alvarez, Lavandera, Vanderwall, Green, Kumar, Hasan (CR12) 2010; 465
CR5
CR8
Lloyd (CR19) 1987
CR7
CR29
Bain, Muggleton (CR3) 1994; 13
CR28
CR9
CR27
CR24
CR22
CR20
De Raedt, Kimmig (CR10) 2015; 100
Pelikan, Goldberg, Lobo (CR23) 2000; 21
Hou, Xia, Zhang, Xu (CR15) 2004; 44
Angelopoulos, Cussens (CR1) 2008; 54
King, Sternberg, Srinivasan (CR18) 1995; 13
Srinivasan (CR35) 2001; 44
M Pelikan (5842_CR23) 2000; 21
T Hou (5842_CR15) 2004; 44
F Riguzzi (5842_CR26) 2011; 11
FJ Gamo (5842_CR12) 2010; 465
5842_CR29
5842_CR28
5842_CR27
5842_CR22
S Muggleton (5842_CR21) 1994; 19,20
5842_CR24
A Srinivasan (5842_CR35) 2001; 44
5842_CR20
JW Lloyd (5842_CR19) 1987
M Bain (5842_CR3) 1994; 13
5842_CR2
L De Raedt (5842_CR10) 2015; 100
5842_CR4
S Harrod (5842_CR14) 2010; 17
N Angelopoulos (5842_CR1) 2008; 54
5842_CR9
L Specia (5842_CR32) 2009; 76
5842_CR5
5842_CR37
5842_CR36
5842_CR7
5842_CR8
5842_CR16
5842_CR38
5842_CR11
5842_CR33
5842_CR13
5842_CR34
F Riguzzi (5842_CR25) 2018
5842_CR31
5842_CR30
A D’Ariano (5842_CR6) 2007; 183
RD King (5842_CR18) 1995; 13
A Jouglet (5842_CR17) 2011; 212
References_xml – volume: 13
  start-page: 411
  issue: 3&4
  year: 1995
  ident: CR18
  article-title: Relating chemical activity to structure: An examination of ILP successes
  publication-title: New Generation Computer
  doi: 10.1007/BF03037232
– ident: CR22
– volume: 76
  start-page: 109
  issue: 1
  year: 2009
  ident: CR32
  article-title: An investigation into feature construction to assist word sense disambiguation
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5114-x
– volume: 100
  start-page: 5
  issue: 1
  year: 2015
  ident: CR10
  article-title: Probabilistic (logic) programming concepts
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5494-z
– ident: CR4
– ident: CR2
– ident: CR16
– ident: CR37
– ident: CR30
– volume: 13
  start-page: 291
  year: 1994
  end-page: 309
  ident: CR3
  article-title: Learning optimal chess strategies
  publication-title: Machine Intelligence
– volume: 21
  start-page: 5
  year: 2000
  ident: CR23
  article-title: A survey of optimization by building and using probabilistic models
  publication-title: Computational Optimization and Applications
  doi: 10.1023/A:1013500812258
– ident: CR33
– ident: CR29
– ident: CR8
– volume: 44
  start-page: 266
  issue: 1
  year: 2004
  ident: CR15
  article-title: ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci034184n
– ident: CR27
– volume: 17
  start-page: 85
  year: 2010
  end-page: 96
  ident: CR14
  article-title: A tutorial on fundamental model structures for railway timetable optimization
  publication-title: Surveys in Operations Research and Management Science
  doi: 10.1016/j.sorms.2012.08.002
– volume: 11
  start-page: 433
  issue: 4–5
  year: 2011
  ident: CR26
  article-title: The PITA system: Tabling and answer subsumption for reasoning under uncertainty
  publication-title: TPLP
– volume: 19,20
  start-page: 629
  year: 1994
  ident: CR21
  article-title: Inductive logic programming: Theory and methods
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 54
  start-page: 53
  issue: 1–3
  year: 2008
  ident: CR1
  article-title: Bayesian learning of Bayesian networks with informative priors
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-009-9133-x
– ident: CR38
– volume: 212
  start-page: 433
  year: 2011
  ident: CR17
  article-title: Dominance rules in combinatorial optimization problems
  publication-title: Operational Research
  doi: 10.1016/j.ejor.2010.11.008
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR34
– ident: CR36
– volume: 183
  start-page: 643
  year: 2007
  end-page: 657
  ident: CR6
  article-title: A branch and bound algorithm for scheduling trains in a railway network
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.10.034
– ident: CR5
– volume: 44
  start-page: 301
  issue: 3
  year: 2001
  ident: CR35
  article-title: Extracting context-sensitive models in inductive logic programming
  publication-title: Machine Learning
  doi: 10.1023/A:1010980106294
– ident: CR7
– ident: CR28
– year: 1987
  ident: CR19
  publication-title: Foundations of logic programming
  doi: 10.1007/978-3-642-83189-8
– ident: CR24
– ident: CR20
– volume: 465
  start-page: 305
  issue: 7296
  year: 2010
  ident: CR12
  article-title: Thousands of chemical starting points for antimalarial lead identification
  publication-title: Nature
  doi: 10.1038/nature09107
– year: 2018
  ident: CR25
  publication-title: Foundations of probabilistic logic programming: Languages, semantics, inference and learning
– ident: 5842_CR13
– volume: 44
  start-page: 266
  issue: 1
  year: 2004
  ident: 5842_CR15
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci034184n
– ident: 5842_CR34
– ident: 5842_CR22
  doi: 10.1016/B978-1-55860-247-2.50048-6
– ident: 5842_CR36
– volume-title: Foundations of logic programming
  year: 1987
  ident: 5842_CR19
  doi: 10.1007/978-3-642-83189-8
– ident: 5842_CR27
  doi: 10.1007/978-3-319-58694-6_25
– volume: 44
  start-page: 301
  issue: 3
  year: 2001
  ident: 5842_CR35
  publication-title: Machine Learning
  doi: 10.1023/A:1010980106294
– volume: 100
  start-page: 5
  issue: 1
  year: 2015
  ident: 5842_CR10
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5494-z
– ident: 5842_CR5
– ident: 5842_CR29
– ident: 5842_CR9
– ident: 5842_CR11
  doi: 10.1007/978-3-642-33275-3_2
– ident: 5842_CR16
  doi: 10.1007/978-3-540-85928-4_14
– volume: 13
  start-page: 291
  year: 1994
  ident: 5842_CR3
  publication-title: Machine Intelligence
– volume: 17
  start-page: 85
  year: 2010
  ident: 5842_CR14
  publication-title: Surveys in Operations Research and Management Science
  doi: 10.1016/j.sorms.2012.08.002
– volume: 21
  start-page: 5
  year: 2000
  ident: 5842_CR23
  publication-title: Computational Optimization and Applications
  doi: 10.1023/A:1013500812258
– ident: 5842_CR37
– volume: 183
  start-page: 643
  year: 2007
  ident: 5842_CR6
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.10.034
– volume-title: Foundations of probabilistic logic programming: Languages, semantics, inference and learning
  year: 2018
  ident: 5842_CR25
– ident: 5842_CR33
– ident: 5842_CR2
  doi: 10.1016/B978-1-55860-200-7.50078-7
– ident: 5842_CR31
– volume: 13
  start-page: 411
  issue: 3&4
  year: 1995
  ident: 5842_CR18
  publication-title: New Generation Computer
  doi: 10.1007/BF03037232
– volume: 76
  start-page: 109
  issue: 1
  year: 2009
  ident: 5842_CR32
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5114-x
– ident: 5842_CR4
– ident: 5842_CR30
– volume: 54
  start-page: 53
  issue: 1–3
  year: 2008
  ident: 5842_CR1
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-009-9133-x
– ident: 5842_CR8
– ident: 5842_CR24
– volume: 465
  start-page: 305
  issue: 7296
  year: 2010
  ident: 5842_CR12
  publication-title: Nature
  doi: 10.1038/nature09107
– ident: 5842_CR28
– volume: 11
  start-page: 433
  issue: 4–5
  year: 2011
  ident: 5842_CR26
  publication-title: TPLP
– ident: 5842_CR20
– volume: 19,20
  start-page: 629
  year: 1994
  ident: 5842_CR21
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– ident: 5842_CR38
  doi: 10.1007/3540635149_56
– volume: 212
  start-page: 433
  year: 2011
  ident: 5842_CR17
  publication-title: Operational Research
  doi: 10.1016/j.ejor.2010.11.008
– ident: 5842_CR7
  doi: 10.1007/978-3-319-99960-9_2
SSID ssj0002686
Score 2.3125002
Snippet In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1371
SubjectTerms Artificial Intelligence
Computer Science
Control
Domains
Functional groups
Logic programming
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Optimization
Random sampling
Ring structures
Robotics
Simulation and Modeling
Special Issue of the Inductive Logic Programming (ILP) 2019
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP-Q6cGL84nTKTl404BN2rQ5ijg8yBAfc7eQV8cO64Yd4p9vkqWbih6UQi8tofyS79Xv8QM4SxgjOsstVrawOJUuZpVlaXFumeZJKZUOdG-Du7zfL4ZDfh-bwuqm2r1JSQZN_anZLYyx9U03zmoS7DzHdWfuCi-OD4-Dpf4lLPA7OvHJsLffsVXm5zW-mqOVj_ktLRqsTa_9v-_chq3oXaKrxXHYgTVb7UK7YW5AUZD34MXzdC4mx1YjNAqjp73eQ1ETokCQUyPn0aKpUyqTWPSDIv9MjXy9_AiZ6USOK7T8MbcPz72bp-tbHCkWsKZJOsc0Y0ZJVnCrrTK6UJfu0qnNbEloyZg2ziFQysV8WnFSGpIwnTDOpYtztGI5PYBWNa3sISBNTJabgsuEmpQSo4xNdErcTRqSE9uB8wZpMVtM0hCrmckeM-EwEwEz8d6BbrMZIkpVLXwrCw2Jxg5cNOCvHv--2tHfXj-GTeLD6lCV24WW2w97Ahv6bT6uX0_DafsAt2_TxA
  priority: 102
  providerName: Springer Nature
Title Constructing generative logical models for optimisation problems using domain knowledge
URI https://link.springer.com/article/10.1007/s10994-019-05842-x
https://www.proquest.com/docview/2424343729
Volume 109
WOSCitedRecordID wos000496197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB609eDF-sRqLTl406DJ7mZ3T6LSIqilVK3Fy7J5bOmh2-oW6c83SbMtCnqRhbkshDAzmUcyMx_AKWGMiiBUmKtIYT_VOWuaZQqHiomYZCkXFu6t_xB2OtFgEHfdhVvhyipLm2gNtZwIc0d-YdoYPPvIdDV9xwY1yryuOgiNdagSSonR8_sQLy0xZRbpUR-kABtP7ppmXOucHYprWni0D6Z4_t0xraLNHw-k1u-0a__d8TZsuYgTXS9UZAfWVL4LtRLNAbnDvQevBrtzMU02H6KhHUdtbCFy1hFZ0JwC6SgXTbShGbtCIOQwaQpkauiHSE7G6ShHy8u6fXhpt55v77CDXcDCI_4MewGTPGVRrITiUkT8Un_CV4HKqJcxJqQOEjjXeaDgMc0kJUwQFsepzn0EZ6F3AJV8kqtDQILKIJRRnBJP-h6VXCoifKpJKmlIVR3OSp4n08V0jWQ1R9lIKNESSqyEknkdGiWjE3fSimTF5Tqcl6Ja_f59taO_VzuGTWpSa1uZ24CK5r86gQ3xORsVH02o3rQ63V7T6pumj7SraTd407T31P8CN1_hLA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB7WB-jFt7g-c9CTBm3apu1BRHyguC57WB94qc2jiwe7asXHn_I3OsmmuyjozYMUeikE0vnyzUySmQ9g3eOcyTDSVOhY0yDDnDXLc00jzWXi5ZmQVu7tshE1m_H1ddKqwUdVC2OuVVacaIladaXZI982ZQy-PWTae3ikRjXKnK5WEho9WJzp91dM2crd00O07wZjx0ftgxPqVAWo9L3gmfohVyLjcaKlFkrGYgcfGehQ58zPOZcKfaAQmOZIkbBcMY9LjydJhqG9FDzycdwhGAkCTJZw_bTCmz7zM26VJXHhhtREDq5Ix5Xq2Sa8pmQIfT6jb18d4SC6_XYga_3c8eR_-0NTMOEiarLfWwLTUNPFDExWahXEkdcsXBlt0l633KJDOrbdtuF64tifWFGgkmAUT7pIpPfuohNxmjslMTUCHaK699ldQfqbkXNw8SfTm4fholvoBSCSqTBScZJ5vgp8poTSngwYvjLFIqbrsFnZOH3odQ9JB32iDSJSRERqEZG-1WG5MmzqmKRMB1atw1YFjcHnn0db_H20NRg7aZ830sZp82wJxpnZRrC3kJdhGG2hV2BUvjzflU-rFuMEbv8aMp88cDxj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58IV6sT6xW3YOedNFskk1yEBG1WCqlB194idlHigdTNeLjr_nrnN1uLAp68yCBXAILyXyZb2Z3Zj6ADY9zJsNIU6FjTYMMc9YszzWNNJeJl2dCWrm3i9Oo04mvrpLuCLxXvTCmrLLyidZRq740e-Q7po3Bt4dMO7kri-geNffvH6hRkDInrZWcxgAibf32gulbudc6QltvMtY8Pjs8oU5hgErfC56oH3IlMh4nWmqhZCx28ZKBDnXO_JxzqZAPhcCUR4qE5Yp5XHo8STIM86XgkY_rjsJ4hDmmSfy64fUnCzBuVSbxJw6piSJcw45r27MDeU37EPI_o69fSXEY6X47nLWc16z95681A9Mu0iYHg19jFkZ0MQe1SsWCOKc2D5dGs3QwRbfokZ4dw204gDhWIFYsqCQY3ZM-Otg7VwBFnBZPSUzvQI-o_l12W5DPTcoFOP-T11uEsaJf6CUgkqkwUnGSeb4KfKaE0p4MGN4yxSKm67BV2Tu9H0wVSYfzow06UkRHatGRvtahURk5dR6mTIcWrsN2BZPh459XW_59tXWYRKSkp61OewWmmNldsMXJDRhDU-hVmJDPT7fl45qFO4Gbv0bMB-RKRTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+generative+logical+models+for+optimisation+problems+using+domain+knowledge&rft.jtitle=Machine+learning&rft.au=Srinivasan+Ashwin&rft.au=Vig+Lovekesh&rft.au=Shroff+Gautam&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=7&rft.spage=1371&rft.epage=1392&rft_id=info:doi/10.1007%2Fs10994-019-05842-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon