Predicting thrust force during drilling of composite laminates with step drills through the Gaussian process regression

PurposeHere, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.Design/methodology/approachUse of machine learning methods could benefit machi...

Full description

Saved in:
Bibliographic Details
Published in:Multidiscipline modeling in materials and structures Vol. 18; no. 5; pp. 845 - 855
Main Authors: Zhang, Yun, Xu, Xiaojie
Format: Journal Article
Language:English
Published: Bingley Emerald Publishing Limited 12.10.2022
Emerald Group Publishing Limited
Subjects:
ISSN:1573-6105, 1573-6113
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract PurposeHere, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.Design/methodology/approachUse of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.FindingsThis model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.Originality/valueThrough combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.
AbstractList PurposeHere, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.Design/methodology/approachUse of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.FindingsThis model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.Originality/valueThrough combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.
Purpose>Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.Design/methodology/approach>Use of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.Findings>This model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.Originality/value>Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.
Author Xu, Xiaojie
Zhang, Yun
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0002-9464-1751
  surname: Zhang
  fullname: Zhang, Yun
  email: yzhang43@ncsu.edu
– sequence: 2
  givenname: Xiaojie
  orcidid: 0000-0002-4452-1540
  surname: Xu
  fullname: Xu, Xiaojie
  email: xxu6@ncsu.edu
BookMark eNp9UU1LAzEUDKJgW_0B3gKeV1-S3c16lKJVsCio5xCTlzay3dQki_jv3aUiKOJphsfM-5g3Jftd6JCQEwZnjEFzvlwuHwuQBQfOC2Bc7JEJq6QoasbE_jeH6pBMU3oFKFlZywl5f4hovcm-W9G8jn3K1IVokNo-jjUbfduOJDhqwmYbks9IW73xnc6Y6LvPa5oybnfKNDYJ_Wo9INKF7lPyuqPbGAymRCOu4oA-dEfkwOk24fEXzsjz9dXT_Ka4u1_czi_vCiNYmQvmKmvRSONQ16Jy3ELjatC1Zs7W-gJN2ViOL2DxooFSALyURtaN4K4ykqOYkdNd32GFtx5TVq-hj90wUnHJBVSVqGFQsZ3KxJBSRKe20W90_FAM1JivGvNVINWYrxrzHTzyl8f4rPNwW47at_86YefEDUbd2j-H_Xim-ASix5No
CitedBy_id crossref_primary_10_1142_S3082844925500137
crossref_primary_10_1007_s13563_024_00457_8
crossref_primary_10_1016_j_dajour_2023_100267
crossref_primary_10_1016_j_measurement_2023_113655
crossref_primary_10_1016_j_engappai_2023_106047
crossref_primary_10_1142_S2661335225500030
crossref_primary_10_1142_S2737599425500021
crossref_primary_10_1016_j_jmapro_2025_06_024
crossref_primary_10_1007_s42824_025_00175_8
crossref_primary_10_1142_S2630534825500019
crossref_primary_10_1108_JM2_05_2024_0150
crossref_primary_10_1142_S2737599424500130
crossref_primary_10_1177_03019233241254891
crossref_primary_10_1177_03019233241297720
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1007_s13563_024_00483_6
crossref_primary_10_1007_s43674_024_00075_5
crossref_primary_10_1007_s11135_025_02080_3
crossref_primary_10_1142_S2972379525500012
crossref_primary_10_1016_j_chemolab_2023_104828
crossref_primary_10_1177_09544089241293584
crossref_primary_10_1007_s11135_025_02233_4
crossref_primary_10_1080_0013791X_2025_2464130
crossref_primary_10_1177_03019233241265194
crossref_primary_10_1108_JM2_12_2023_0315
crossref_primary_10_1007_s00521_024_10270_7
crossref_primary_10_1016_j_tws_2025_113721
crossref_primary_10_1142_S2972335325500024
crossref_primary_10_1007_s00521_024_09531_2
crossref_primary_10_1007_s00521_024_10726_w
crossref_primary_10_1108_JFMPC_02_2024_0011
crossref_primary_10_1007_s13563_024_00477_4
crossref_primary_10_1177_07316844231225593
Cites_doi 10.3139/120.100909
10.1016/S0007-8506(07)60186-3
10.1016/j.jmatprotec.2006.11.146
10.3139/120.110523
10.1039/D0CE00928H
10.1515/mt-2021-0012
10.1021/acsomega.1c00781
10.1088/0953-2048/27/5/055016
10.1088/0953-2048/29/12/125005
10.1016/j.cplett.2020.137993
10.1002/qua.26480
10.1177/0021998320984245
10.1515/mt-2020-0023
10.1007/s00170-008-1678-z
10.1007/s00170-006-0808-8
10.3139/120.111315
10.1177/0731684420940773
10.1021/acs.iecr.0c05055
10.1016/j.ceramint.2019.06.112
10.1016/j.jmau.2017.01.001
10.1016/j.jmgm.2020.107796
10.1016/j.cirp.2018.04.035
10.1016/j.compstruct.2020.111920
10.1016/j.jmmm.2020.166998
10.1016/j.procir.2018.09.072
10.3139/120.110821
10.1515/mt-2020-0020
10.1515/mt-2020-0017
10.1039/D0RA03031G
10.1039/d0nj03868g
10.1007/s10948-020-05682-0
10.1080/02533839.2019.1708804
10.3139/120.111198
10.1016/j.ijmachtools.2012.01.006
10.1088/0953-2048/29/9/095012
10.1016/j.mspro.2014.07.195
10.1515/mt-2020-0097
10.1016/j.mlwa.2020.100010
10.1016/j.jmrt.2017.06.003
10.1007/s12541-019-00017-z
10.1021/acsomega.0c01438
10.1016/j.est.2021.102816
10.1016/0010-4361(83)90157-X
10.1016/S0007-8506(07)61703-X
10.1007/3-540-45612-0_1
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
8FH
ABJCF
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
GNUQQ
HCIFZ
KB.
L6V
LK8
M7P
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1108/MMMS-07-2022-0123
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-6113
EndPage 855
ExternalDocumentID 10_1108_MMMS_07_2022_0123
10.1108/MMMS-07-2022-0123
GroupedDBID 0R~
123
29M
4.4
5VS
AADTA
AADXL
AAGBP
AAMCF
AAPBV
AATHL
AAUDR
ABIJV
ABKQV
ABPTK
ABSDC
ACGFS
ACIWK
ACPRK
ADBBV
ADOMW
AEBVX
AEBZA
AEUCW
AEVUW
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AMFWP
ASMFL
AUCOK
BENPR
BHPHI
BPQFQ
CS3
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
HCIFZ
HZ~
J1Y
JI-
JL0
KBGRL
M7P
O9-
V1G
8FE
8FG
8FH
AAYXX
ABJCF
ABJNI
ABYQI
ACZLT
AFFHD
AFKRA
AHMHQ
AODMV
BBNVY
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
H13
KB.
L6V
LK8
M42
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
SBBZN
7TB
8FD
AFNTC
AZQEC
DWQXO
FR3
GNUQQ
PKEHL
PQEST
PQUKI
ID FETCH-LOGICAL-c314t-1f5ddec7cfea635f2d08f60a6a1fd6a9ec48d2eb0de9804300b4c76832f5c72e3
IEDL.DBID M7P
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-6105
IngestDate Fri Jul 25 12:16:14 EDT 2025
Tue Nov 18 22:36:02 EST 2025
Sat Nov 29 07:41:30 EST 2025
Fri Jan 13 01:30:30 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Drilling
Gaussian process regression
Composite material
Thrust force
Machine learning
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-1f5ddec7cfea635f2d08f60a6a1fd6a9ec48d2eb0de9804300b4c76832f5c72e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4452-1540
0000-0002-9464-1751
PQID 2723055360
PQPubID 1386335
PageCount 11
ParticipantIDs crossref_primary_10_1108_MMMS_07_2022_0123
crossref_citationtrail_10_1108_MMMS_07_2022_0123
emerald_primary_10_1108_MMMS-07-2022-0123
proquest_journals_2723055360
PublicationCentury 2000
PublicationDate 2022-10-12
PublicationDateYYYYMMDD 2022-10-12
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-12
  day: 12
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle Multidiscipline modeling in materials and structures
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023011212554368600_ref045) 2021; 60
(key2023011212554368600_ref022) 2008; 50
(key2023011212554368600_ref005) 2012; 57
(key2023011212554368600_ref012) 2017; 5
(key2023011212554368600_ref030) 2008; 36
(key2023011212554368600_ref034) 2020; 44
(key2023011212554368600_ref044) 2021; 55
(key2023011212554368600_ref026) 2021; 41
(key2023011212554368600_ref037) 2020; 5
(key2023011212554368600_ref042) 2021; 103
(key2023011212554368600_ref019) 2009; 42
(key2023011212554368600_ref004) 2018; 67
(key2023011212554368600_ref018) 2021; 63
(key2023011212554368600_ref035) 2020; 512
(key2023011212554368600_ref024) 2021; 63
(key2023011212554368600_ref015) 1983; 14
(key2023011212554368600_ref003) 2018; 78
(key2023011212554368600_ref029) 2002; 51
(key2023011212554368600_ref011) 2014; 56
key2023011212554368600_ref032
(key2023011212554368600_ref028) 2019; 20
(key2023011212554368600_ref048) 2016; 29
(key2023011212554368600_ref016) 2021; 63
(key2023011212554368600_ref008) 2021; 63
(key2023011212554368600_ref036) 2020; 10
(key2023011212554368600_ref039) 2020; 760
(key2023011212554368600_ref013) 1985; 34
(key2023011212554368600_ref047) 2016; 29
(key2023011212554368600_ref006) 2019; 45
(key2023011212554368600_ref031) 2018; 60
(key2023011212554368600_ref001) 2007; 186
(key2023011212554368600_ref043) 2021; 3
(key2023011212554368600_ref033) 2016; 58
(key2023011212554368600_ref046) 2014; 27
(key2023011212554368600_ref017) 2015
key2023011212554368600_ref025
(key2023011212554368600_ref020) 2021; 6
(key2023011212554368600_ref009) 2020; 43
(key2023011212554368600_ref040) 2021; 121
(key2023011212554368600_ref041) 2021; 34
(key2023011212554368600_ref002) 2011; 12
(key2023011212554368600_ref014) 2019; 61
(key2023011212554368600_ref027) 2014; 6
(key2023011212554368600_ref021) 2018; 7
(key2023011212554368600_ref007) 2020; 236
(key2023011212554368600_ref010) 2021; 63
(key2023011212554368600_ref023) 2021; 40
(key2023011212554368600_ref038) 2020; 22
References_xml – volume: 50
  start-page: 495
  issue: 9
  year: 2008
  ident: key2023011212554368600_ref022
  article-title: The multiple-incremental hole drilling method
  publication-title: Materials Testing
  doi: 10.3139/120.100909
– volume: 34
  start-page: 537
  issue: 2
  year: 1985
  ident: key2023011212554368600_ref013
  article-title: Machining of fibre reinforced plastics
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)60186-3
– volume: 186
  start-page: 1
  issue: 1-3
  year: 2007
  ident: key2023011212554368600_ref001
  article-title: Drilling of fiber reinforced plastics: a review
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2006.11.146
– volume: 56
  start-page: 47
  issue: 1
  year: 2014
  ident: key2023011212554368600_ref011
  article-title: Optimization of the cutting parameters for drilling magnesium alloy AZ 91
  publication-title: Materials Testing
  doi: 10.3139/120.110523
– volume: 22
  start-page: 6385
  year: 2020
  ident: key2023011212554368600_ref038
  article-title: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00928H
– volume: 63
  start-page: 848
  issue: 9
  year: 2021
  ident: key2023011212554368600_ref008
  article-title: Effect of substrate surface roughness on the wear of molybdenum disulphate coated rolling contact bearings
  publication-title: Materials Testing
  doi: 10.1515/mt-2021-0012
– volume: 6
  start-page: 11585
  issue: 17
  year: 2021
  ident: key2023011212554368600_ref020
  article-title: MLatticeABC: generic lattice constant prediction of crystal materials using machine learning
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00781
– volume: 27
  issue: 5
  year: 2014
  ident: key2023011212554368600_ref046
  article-title: Synthesis of Bi2Sr2CaCu2Ox superconductors via direct oxidation of metallic precursors
  publication-title: Superconductor Science and Technology
  doi: 10.1088/0953-2048/27/5/055016
– volume: 29
  issue: 12
  year: 2016
  ident: key2023011212554368600_ref048
  article-title: Formation of Bi2Sr2CaCu2Ox/Ag multifilamentary metallic precursor powder-in-tube wires
  publication-title: Superconductor Science and Technology
  doi: 10.1088/0953-2048/29/12/125005
– volume: 760
  year: 2020
  ident: key2023011212554368600_ref039
  article-title: Machine learning lattice constants for spinel compounds
  publication-title: Chemical Physics Letters
  doi: 10.1016/j.cplett.2020.137993
– volume: 121
  issue: 5
  year: 2021
  ident: key2023011212554368600_ref040
  article-title: Machine learning lattice parameters of monoclinic double perovskites
  publication-title: International Journal of Quantum Chemistry
  doi: 10.1002/qua.26480
– ident: key2023011212554368600_ref025
– volume: 55
  start-page: 2061
  year: 2021
  ident: key2023011212554368600_ref044
  article-title: Predicting the delamination factor in carbon fibre reinforced plastic composites during drilling through the Gaussian process regression
  publication-title: Journal of Composite Materials
  doi: 10.1177/0021998320984245
– volume: 63
  start-page: 163
  issue: 2
  year: 2021
  ident: key2023011212554368600_ref016
  article-title: Preparation and fatigue behavior of graphene-based aerogel/epoxy nanocomposites
  publication-title: Materials Testing
  doi: 10.1515/mt-2020-0023
– volume: 42
  start-page: 1082
  issue: 11-12
  year: 2009
  ident: key2023011212554368600_ref019
  article-title: Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-008-1678-z
– volume: 36
  start-page: 11
  issue: 1-2
  year: 2008
  ident: key2023011212554368600_ref030
  article-title: Prediction of thrust force of step drill in drilling composite material by Taguchi method and radial basis function network
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-006-0808-8
– volume: 61
  start-page: 260
  issue: 3
  year: 2019
  ident: key2023011212554368600_ref014
  article-title: Effects of the drill flute number on drilling of a casted AZ91 magnesium alloy
  publication-title: Materials Testing
  doi: 10.3139/120.111315
– volume: 40
  start-page: 41
  issue: 1-2
  year: 2021
  ident: key2023011212554368600_ref023
  article-title: Challenges on machining characteristics of natural fiber-reinforced composites–a review
  publication-title: Journal of Reinforced Plastics and Composites
  doi: 10.1177/0731684420940773
– volume: 60
  start-page: 343
  issue: 1
  year: 2021
  ident: key2023011212554368600_ref045
  article-title: Machine learning properties of electrolyte additives: a focus on redox potentials
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/acs.iecr.0c05055
– volume: 45
  start-page: 18155
  issue: 15
  year: 2019
  ident: key2023011212554368600_ref006
  article-title: A review on machining of carbon fiber reinforced ceramic matrix composites
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2019.06.112
– volume: 5
  start-page: 119
  issue: 3
  year: 2017
  ident: key2023011212554368600_ref012
  article-title: Literature review on imperfection of composite laminated plates
  publication-title: Journal of Microscopy and Ultrastructure
  doi: 10.1016/j.jmau.2017.01.001
– volume: 103
  year: 2021
  ident: key2023011212554368600_ref042
  article-title: Machine learning glass transition temperature of styrenic random copolymers
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2020.107796
– volume: 67
  start-page: 483
  issue: 1
  year: 2018
  ident: key2023011212554368600_ref004
  article-title: Machine learning approach based on fractal analysis for optimal tool life exploitation in CFRP composite drilling for aeronautical assembly
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2018.04.035
– volume: 236
  year: 2020
  ident: key2023011212554368600_ref007
  article-title: Thin-ply composite laminates: a review
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2020.111920
– volume: 512
  year: 2020
  ident: key2023011212554368600_ref035
  article-title: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression
  publication-title: Journal of Magnetism and Magnetic Materials
  doi: 10.1016/j.jmmm.2020.166998
– volume: 78
  start-page: 307
  year: 2018
  ident: key2023011212554368600_ref003
  article-title: Dimensionality reduction of sensorial features by principal component analysis for ANN machine learning in tool condition monitoring of CFRP drilling
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.09.072
– volume: 58
  start-page: 69
  issue: 1
  year: 2016
  ident: key2023011212554368600_ref033
  article-title: Deep micro-hole drilling of Hardox 500 by electro-discharge machining
  publication-title: Materials Testing
  doi: 10.3139/120.110821
– volume: 63
  start-page: 131
  issue: 2
  year: 2021
  ident: key2023011212554368600_ref024
  article-title: Ultrasonic C-scan techniques for the evaluation of impact damage in CFRP
  publication-title: Materials Testing
  doi: 10.1515/mt-2020-0020
– volume: 63
  start-page: 119
  issue: 2
  year: 2021
  ident: key2023011212554368600_ref018
  article-title: Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering
  publication-title: Materials Testing
  doi: 10.1515/mt-2020-0017
– volume: 10
  start-page: 20646
  year: 2020
  ident: key2023011212554368600_ref036
  article-title: Relative cooling power modeling of lanthanum manganites using Gaussian process regression
  publication-title: RSC Advances
  doi: 10.1039/D0RA03031G
– volume: 44
  start-page: 20544
  year: 2020
  ident: key2023011212554368600_ref034
  article-title: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids
  publication-title: New Journal of Chemistry
  doi: 10.1039/d0nj03868g
– volume: 34
  start-page: 63
  issue: 1
  year: 2021
  ident: key2023011212554368600_ref041
  article-title: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature
  publication-title: Journal of Superconductivity and Novel Magnetism
  doi: 10.1007/s10948-020-05682-0
– volume: 43
  start-page: 346
  issue: 4
  year: 2020
  ident: key2023011212554368600_ref009
  article-title: Integrating Taguchi method and artificial neural network to explore machine learning of computer aided engineering
  publication-title: Journal of the Chinese Institute of Engineers
  doi: 10.1080/02533839.2019.1708804
– volume: 60
  start-page: 627
  issue: 6
  year: 2018
  ident: key2023011212554368600_ref031
  article-title: Influence of cutting temperature when drilling carbon black reinforced polyamides
  publication-title: Materials Testing
  doi: 10.3139/120.111198
– volume: 57
  start-page: 102
  year: 2012
  ident: key2023011212554368600_ref005
  article-title: Modeling of machining of composite materials: a review
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2012.01.006
– volume: 29
  issue: 9
  year: 2016
  ident: key2023011212554368600_ref047
  article-title: High critical current density Bi2Sr2CaCu2Ox/Ag wire containing oxide precursor synthesized from nano-oxides
  publication-title: Superconductor Science and Technology
  doi: 10.1088/0953-2048/29/9/095012
– volume: 6
  start-page: 1217
  year: 2014
  ident: key2023011212554368600_ref027
  article-title: Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method
  publication-title: Procedia Materials Science
  doi: 10.1016/j.mspro.2014.07.195
– volume: 63
  start-page: 581
  issue: 6
  year: 2021
  ident: key2023011212554368600_ref010
  article-title: Experimental and numerical investigation of the thrust force and temperature generation during a drilling process
  publication-title: Materials Testing
  doi: 10.1515/mt-2020-0097
– year: 2015
  ident: key2023011212554368600_ref017
  article-title: A comparison of speech synthesis systems based on GPR, HMM, and DNN with a small amount of training data
– volume: 3
  year: 2021
  ident: key2023011212554368600_ref043
  article-title: Predictions of adsorption energies of methane-related species on Cu-based alloys through machine learning
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2020.100010
– volume: 7
  start-page: 180
  issue: 2
  year: 2018
  ident: key2023011212554368600_ref021
  article-title: Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2017.06.003
– volume: 20
  start-page: 593
  issue: 4
  year: 2019
  ident: key2023011212554368600_ref028
  article-title: Multi-objective optimization in drilling Kevlar fiber reinforced polymer using grey fuzzy analysis and Backpropagation Neural Network–Genetic Algorithm (BPNN–GA) Approaches
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-019-00017-z
– volume: 5
  start-page: 15344
  year: 2020
  ident: key2023011212554368600_ref037
  article-title: Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01438
– volume: 41
  year: 2021
  ident: key2023011212554368600_ref026
  article-title: Small sample state of health estimation based on weighted Gaussian process regression
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2021.102816
– volume: 14
  start-page: 371
  issue: 4
  year: 1983
  ident: key2023011212554368600_ref015
  article-title: The cutting process, chips, and cutting forces in machining CFRP
  publication-title: Composites
  doi: 10.1016/0010-4361(83)90157-X
– volume: 12
  start-page: 2879
  issue: October
  year: 2011
  ident: key2023011212554368600_ref002
  article-title: Convergence rates of efficient global optimization algorithms
  publication-title: Journal of Machine Learning Research
– volume: 51
  start-page: 611
  issue: 2
  year: 2002
  ident: key2023011212554368600_ref029
  article-title: Machining of composite materials
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)61703-X
– ident: key2023011212554368600_ref032
  doi: 10.1007/3-540-45612-0_1
SSID ssj0041467
Score 2.3785093
Snippet PurposeHere, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting...
Purpose>Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 845
SubjectTerms Algorithms
Carbon fibers
Composite materials
Cost effectiveness
Design of experiments
Drilling
Drilling machines (tools)
Drills
Feed rate
Fractals
Gaussian process
Industrial applications
Laminates
Machine learning
Machining
Neural networks
Optimization
Polymers
Regression
Taguchi methods
Thrust
Variables
Title Predicting thrust force during drilling of composite laminates with step drills through the Gaussian process regression
URI https://www.emerald.com/insight/content/doi/10.1108/MMMS-07-2022-0123/full/html
https://www.proquest.com/docview/2723055360
Volume 18
WOSCitedRecordID wos000850021300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-6113
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0041467
  issn: 1573-6105
  databaseCode: M7P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-6113
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0041467
  issn: 1573-6105
  databaseCode: M7S
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-6113
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0041467
  issn: 1573-6105
  databaseCode: KB.
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-6113
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0041467
  issn: 1573-6105
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VxwEOUB5VF-jKh15ASvE62dg-IUBQJLqrFVCJW-T4QVeqskuytH8fj-PlpYpLL8khThTpG4_H42--AfgqhVO9kuuEuVJi6iZLSp7qhNPcKqmFVi6o6__gw6G4vZWjmHBrIq1y7hODozYTjTnyQ8YZilOlOT2a3ifYNQpPV2MLjQVYQpWENFD3RnNPnKEXCHqpPPVbJNqPp5rY-WYwGFxjio4hmx3jilfr0pvi3GcHHVad8_X__d-PsBbjTXLcGsgGfLDVJqy-UCHcgr-jGk9rkP9MZr-wBoP4SFZb0pYwElOPg3A3mTiCDHSkeVniLWlcYaBKMJVLvLFM25ENib1__N2S7-qhwTpNMm0rEkht71rqbbUNP8_Pbk4vktiPIdFpL5slPdf3zlBz7azycYpjhgqXU5WrnjO5klZnwjBbUmOlQC0xWmbab2dS5vqaM5t-gsVqUtnPQIxfm1OnhHM-_DSZxL4MSuaOyrJvmBIdoHM0Ch3FyrFnxu8ibFqoKBDAgvICASwQwA4cPL0ybZU63hu8HyH-59hXltGBvTnCRZzgTfEM7877j3dhJXwpkGD2YHFWP9gvsKz_zMZN3YWlk7Ph6KoLC5cn37rBesP1-hFwYvbk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFolyoHxVLLTgAxxAivA62dg-VFVFW1p1d7USRerNOP6AlVB2SbZU_VP9jfU4CaWo6q0HTjnEiZT4zcyz_WYG4K0UXvcLbhLmC4lbN1lS8NQknOZOSyOM9rG6_pCPx-LkRE6W4KLLhUFZZecTo6O2M4N75B8ZZ1icKs3p9vxXgl2j8HS1a6HRwOLInZ-FJVu9dbgb5vcdY_t7x58OkrarQGLSfrZI-n4QTNpw450O0dYzS4XPqc5139tcS2cyYZkrqHVSYEUsWmQmkPKU-YHhzKXhvfdgJdAIJqJUcNJ5_gy9TqzPytOwJKOD9hQVO-2MRqMvuCXIUD2PPOZaHPwnGfgqIMQot7_2v_2fx_Co5dNkpzGAJ7Dkyqfw8K8qi8_gbFLhaRTqu8niB-aYkMDUjSNNiiax1TQWJiczT1BhjzI2R4KlTEsk4gS3qkkwhnkzsiZtb6NwdeSzPq0xD5XMm4wLUrnvjbS4fA5f7-TL12G5nJXuBRAbuEfqtfA-0GubSew7oWXuqSwGlmnRA9rNvjJtMXbsCfJTxUUZFQoBoyhXCBiFgOnBhz-PzJtKJLcNft9C6sax15DYg40OUap1YLW6gtPL22-_gQcHx6OhGh6Oj17BanxrFPxswPKiOnWbcN_8Xkzr6nW0FQLf7hp8l0WEUuY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLULtgvKqGFrAC1iAFNXjZGJ7USFEO1C1MxoJkLozjh90pCozJNNW_Fq_rr5OQimquuuCVRZxLCU592H73HMB3kjhdb_gJmG-kLh1kyUFT03Cae60NMJoH9X1D_l4LI6O5GQJLrpaGKRVdj4xOmo7M7hHvs04Q3GqNKfbvqVFTHaHH-a_EuwghSetXTuNBiIH7vd5WL7VO_u74V-_ZWy49-3Tl6TtMJCYtJ8tkr4fBPM23HinQ-T1zFLhc6pz3fc219KZTFjmCmqdFKiORYvMhAQ9ZX5gOHNpmPcerHAULY-0wUkXBTL0QFGrladheUYH7Ykqdt0ZjUZfcXuQIZMec5prMfGfwuCr4BAj3nD9f_5Wj-Bhm2eTj41hPIYlVz6Btb_UF5_C-aTCUyrkfZPFMdaekJDBG0ea0k1iq2kULCczT5B5j_Q2R4IFTUtM0AluYZNgJPNmZE3ankfh6shnfVpjfSqZN5UYpHI_G8px-Qy-38mbb8ByOSvdcyA25CSp18L7kHbbTGI_Ci1zT2UxsEyLHtAOCcq0Iu3YK-RExcUaFQrBoyhXCB6F4OnB-z-PzBuFktsGv2vhdePYa6jswVaHLtU6tlpdQevF7bdfw4OAOXW4Pz7YhNU4aeQBbcHyojp1L-G-OVtM6-pVNBsCP-4ae5cN9Vuj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+thrust+force+during+drilling+of+composite+laminates+with+step+drills+through+the+Gaussian+process+regression&rft.jtitle=Multidiscipline+modeling+in+materials+and+structures&rft.au=Zhang%2C+Yun&rft.au=Xu%2C+Xiaojie&rft.date=2022-10-12&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=1573-6105&rft.eissn=1573-6113&rft.volume=18&rft.issue=5&rft.spage=845&rft.epage=855&rft_id=info:doi/10.1108%2FMMMS-07-2022-0123&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-6105&client=summon