A Polynomial Kernel for Funnel Arc Deletion Set

In Directed Feedback Arc Set ( DFAS ) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider C - Arc Deletion Set ( C - ADS ), a variant of D...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 84; no. 8; pp. 2358 - 2378
Main Author: Garlet Milani, Marcelo
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2022
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Directed Feedback Arc Set ( DFAS ) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider C - Arc Deletion Set ( C - ADS ), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class C . In this work, we choose C to be the class of funnels . Funnel - ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k . So far no polynomial kernels for this problem were known. Our main result is a kernel for Funnel - ADS with O ( k 6 ) many vertices and O ( k 7 ) many arcs, computable in O ( n m ) time, where n is the number of vertices and m the number of arcs in the input digraph.
AbstractList In Directed Feedback Arc Set ( DFAS ) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider $$\mathcal {C}$$ C - Arc Deletion Set ( $$\mathcal {C}$$ C - ADS ), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class $$\mathcal {C}$$ C . In this work, we choose $$\mathcal {C}$$ C to be the class of funnels . Funnel - ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k . So far no polynomial kernels for this problem were known. Our main result is a kernel for Funnel - ADS with $$\mathcal {O}(k^6)$$ O ( k 6 ) many vertices and $$\mathcal {O}(k^7)$$ O ( k 7 ) many arcs, computable in $$\mathcal {O}(nm)$$ O ( n m ) time, where n is the number of vertices and m the number of arcs in the input digraph.
In Directed Feedback Arc Set (DFAS) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider C-Arc Deletion Set (C-ADS), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class C. In this work, we choose C to be the class of funnels. Funnel-ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k. So far no polynomial kernels for this problem were known. Our main result is a kernel for Funnel-ADS with O(k6) many vertices and O(k7) many arcs, computable in O(nm) time, where n is the number of vertices and m the number of arcs in the input digraph.
In Directed Feedback Arc Set ( DFAS ) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider C - Arc Deletion Set ( C - ADS ), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class C . In this work, we choose C to be the class of funnels . Funnel - ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k . So far no polynomial kernels for this problem were known. Our main result is a kernel for Funnel - ADS with O ( k 6 ) many vertices and O ( k 7 ) many arcs, computable in O ( n m ) time, where n is the number of vertices and m the number of arcs in the input digraph.
Author Garlet Milani, Marcelo
Author_xml – sequence: 1
  givenname: Marcelo
  orcidid: 0000-0001-8398-4751
  surname: Garlet Milani
  fullname: Garlet Milani, Marcelo
  email: m.garletmillani@tu-berlin.de
  organization: Logic and Semantics, Institute of Software Engineering and Theoretical Computer Science
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnmNnkjTZHEu1KhYU1HNId7PSsk1qsqX035u6gjdPM8O8H_CMyMAH7wi5RrhFADVJAGLKKTBGAbQEejgjQxQ8n1OBAzIEVCUVEtUFGaW0AUCmtBySyax4De3Rh-3atsWzi961RRNisdj70zqLVXHnWtetgy_eXHdJzhvbJnf1O8fkY3H_Pn-ky5eHp_lsSSuOoqO4KrnSDFByDbqsaiuV5jXyknNrZSOmtXYWJJeQf0zb1QpZhc6WkmlRN3xMbvrcXQxfe5c6swn76HOlYVIzxTkrMatYr6piSCm6xuziemvj0SCYExjTgzEZjPkBYw7ZxHtTymL_6eJf9D-ub8TBZZY
Cites_doi 10.1016/j.disopt.2017.02.002
10.1016/j.jcss.2017.07.008
10.1007/978-1-4471-5559-1
10.1145/1411509.1411511
10.1007/s10878-019-00464-4
10.1007/978-3-030-24766-9_38
10.1007/s00453-015-0038-2
10.1016/j.jcss.2009.09.002
10.1007/978-3-642-30891-8_10
10.1007/978-3-319-21275-3
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-00960-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2378
ExternalDocumentID 10_1007_s00453_022_00960_w
GrantInformation_xml – fundername: Technische Universität Berlin (3136)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c314t-1b8379201639098cda6793d13833aa6f45d9ea06360cda29abb12c1ea86294df3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778043800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:08:17 EDT 2025
Sat Nov 29 02:20:33 EST 2025
Fri Feb 21 02:44:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Graph editing
Kernels
Funnels
Parameterized algorithm
Directed feedback arc set
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-1b8379201639098cda6793d13833aa6f45d9ea06360cda29abb12c1ea86294df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8398-4751
OpenAccessLink https://link.springer.com/10.1007/s00453-022-00960-w
PQID 2692733281
PQPubID 2043795
PageCount 21
ParticipantIDs proquest_journals_2692733281
crossref_primary_10_1007_s00453_022_00960_w
springer_journals_10_1007_s00453_022_00960_w
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenJLiuYLuSO’sullivanBRazgonIA fixed-parameter algorithm for the directed feedback vertex set problemJ. ACM200855521245654610.1145/1411509.1411511
Abu-KhzamFNA kernelization algorithm for d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-hitting setJ. Comput. Syst. Sci.2010767524531266281710.1016/j.jcss.2009.09.002
Garlet MillaniMMolterHNiedermeierRSorgeMEfficient algorithms for measuring the funnel-likeness of dagsJ. Combin. Optim.2020391216245404710510.1007/s10878-019-00464-4
CyganMFominFVKowalikŁLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
DowneyRGFellowsMRFundamentals of Parameterized Complexity2013LondonSpringer10.1007/978-1-4471-5559-1
FominFVLokshtanovDSaurabhSZehaviMKernelization: Theory of Parameterized Preprocessing2019United KingdomCambridge University Press1426.68003
Bang-JensenJMaddaloniASaurabhSAlgorithms and kernels for feedback set problems in generalizations of tournamentsAlgorithmica2016762320343353702110.1007/s00453-015-0038-2
Lokshtanov, D., Ramanujan, M., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe bounded treewidth graphs admit a polynomial kernel for dfvs. In: Workshop on Algorithms and Data Structures, pp. 523–537 (2019). Springer
Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization—preprocessing with a guarantee. In: The Multivariate Algorithmic Revolution and Beyond, pp. 129–161. Springer, Berlin, Heidelberg (2012)
AgrawalASaurabhSSharmaRZehaviMKernels for deletion to classes of acyclic digraphsJ. Comput. Syst. Sci.201892921372139710.1016/j.jcss.2017.07.008
MnichMvan LeeuwenEJPolynomial kernels for deletion to classes of acyclic digraphsDiscrete Optim.2017254876367987410.1016/j.disopt.2017.02.002
Kratsch, S.: Recent developments in kernelization: a survey. Bull. EATCS 2(113) (2014)
960_CR6
A Agrawal (960_CR8) 2018; 92
FV Fomin (960_CR12) 2019
J Chen (960_CR3) 2008; 55
M Mnich (960_CR7) 2017; 25
RG Downey (960_CR2) 2013
FN Abu-Khzam (960_CR4) 2010; 76
M Garlet Millani (960_CR9) 2020; 39
M Cygan (960_CR1) 2015
J Bang-Jensen (960_CR5) 2016; 76
960_CR10
960_CR11
References_xml – reference: Kratsch, S.: Recent developments in kernelization: a survey. Bull. EATCS 2(113) (2014)
– reference: FominFVLokshtanovDSaurabhSZehaviMKernelization: Theory of Parameterized Preprocessing2019United KingdomCambridge University Press1426.68003
– reference: Lokshtanov, D., Ramanujan, M., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe bounded treewidth graphs admit a polynomial kernel for dfvs. In: Workshop on Algorithms and Data Structures, pp. 523–537 (2019). Springer
– reference: MnichMvan LeeuwenEJPolynomial kernels for deletion to classes of acyclic digraphsDiscrete Optim.2017254876367987410.1016/j.disopt.2017.02.002
– reference: Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization—preprocessing with a guarantee. In: The Multivariate Algorithmic Revolution and Beyond, pp. 129–161. Springer, Berlin, Heidelberg (2012)
– reference: DowneyRGFellowsMRFundamentals of Parameterized Complexity2013LondonSpringer10.1007/978-1-4471-5559-1
– reference: AgrawalASaurabhSSharmaRZehaviMKernels for deletion to classes of acyclic digraphsJ. Comput. Syst. Sci.201892921372139710.1016/j.jcss.2017.07.008
– reference: CyganMFominFVKowalikŁLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015ChamSpringer10.1007/978-3-319-21275-3
– reference: ChenJLiuYLuSO’sullivanBRazgonIA fixed-parameter algorithm for the directed feedback vertex set problemJ. ACM200855521245654610.1145/1411509.1411511
– reference: Abu-KhzamFNA kernelization algorithm for d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-hitting setJ. Comput. Syst. Sci.2010767524531266281710.1016/j.jcss.2009.09.002
– reference: Garlet MillaniMMolterHNiedermeierRSorgeMEfficient algorithms for measuring the funnel-likeness of dagsJ. Combin. Optim.2020391216245404710510.1007/s10878-019-00464-4
– reference: Bang-JensenJMaddaloniASaurabhSAlgorithms and kernels for feedback set problems in generalizations of tournamentsAlgorithmica2016762320343353702110.1007/s00453-015-0038-2
– volume: 25
  start-page: 48
  year: 2017
  ident: 960_CR7
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2017.02.002
– volume: 92
  start-page: 9
  year: 2018
  ident: 960_CR8
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2017.07.008
– ident: 960_CR10
– volume-title: Fundamentals of Parameterized Complexity
  year: 2013
  ident: 960_CR2
  doi: 10.1007/978-1-4471-5559-1
– volume: 55
  start-page: 21
  issue: 5
  year: 2008
  ident: 960_CR3
  publication-title: J. ACM
  doi: 10.1145/1411509.1411511
– volume: 39
  start-page: 216
  issue: 1
  year: 2020
  ident: 960_CR9
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-019-00464-4
– ident: 960_CR6
  doi: 10.1007/978-3-030-24766-9_38
– volume: 76
  start-page: 320
  issue: 2
  year: 2016
  ident: 960_CR5
  publication-title: Algorithmica
  doi: 10.1007/s00453-015-0038-2
– volume: 76
  start-page: 524
  issue: 7
  year: 2010
  ident: 960_CR4
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2009.09.002
– ident: 960_CR11
  doi: 10.1007/978-3-642-30891-8_10
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 960_CR1
  doi: 10.1007/978-3-319-21275-3
– volume-title: Kernelization: Theory of Parameterized Preprocessing
  year: 2019
  ident: 960_CR12
SSID ssj0012796
Score 2.3218935
Snippet In Directed Feedback Arc Set ( DFAS ) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem...
In Directed Feedback Arc Set (DFAS) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2358
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Deletion
Funnels
Graph theory
Kernels
Mathematics of Computing
Polynomials
Special Issue: Parameterized and Exact Computation (IPEC 2020)
Theory of Computation
Title A Polynomial Kernel for Funnel Arc Deletion Set
URI https://link.springer.com/article/10.1007/s00453-022-00960-w
https://www.proquest.com/docview/2692733281
Volume 84
WOSCitedRecordID wos000778043800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg7eNNgk-8qxqEUQSrEqvS3ZJAuCbKXdWvz3TtLdFkUPek4Yli-ZzDc7L4DzJBPcxiqkQihFAx0bKo1h1P1LDrXNw04e-GETcb-fjEZyUBWFTets9zok6V_qZbGbYx8u5sip5910vg4baO4SN7DhYfi8jB3w2E_lcnPnaYAGuiqV-VnGV3O04pjfwqLe2vSa__vOHdiu2CXpLq7DLqzZYg-a9eQGUinyPlx1yWD8-uFKknH7vZ0U9pUgfSW9mct7QQGa3FjXl3tckKEtD-Cpd_t4fUer0QlUCxaUlGXoeEo07khAECJtVISKaBj6o3gmUR6ERlrVcc3CcI1LlWWMa2YVOjgyMLk4hEYxLuwRkDxXQppEK3QFg4QxqWRoEhHpjhLIFkQLLmoE07dFh4x02QvZY5EiFqnHIp23oF2DnFbaMk15JJFFCZ6wFlzWoK6Wf5d2_LftJ7DF_bm4_L02NMrJzJ7Cpn4vX6aTM3-LPgFuv785
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4omuhFfEYUdQ_etJFu99UjUQkGJETQcNuUtpuYkMXAIvHfOy27EI0e9Nxmsvna6Xyz8wK4jIbM1aHwCWNCEE-GinClKDH_kn2pE7-WeHbYRNjpRIMB7-ZFYdMi270ISdqXelnsZtiHiTm6xPJuMl-HDQ8tlumY_9R7WcYO3NBO5TJz54mHBjovlflZxldztOKY38Ki1to0yv_7zl3YydmlU19chz1Y0-k-lIvJDU6uyAdwU3e649GHKUnG7S09SfXIQfrqNGYm7wUFSOdOm77c49Tp6ewQnhv3_dsmyUcnEMmolxE6RMeTo3FHAlLjkVQiQEVUFP1RPJMg8XzFtaiZZmG45nIxHFJXUi3QweGeStgRlNJxqo_BSRLBuIqkQFfQiyjlgvsqYoGsCYZsgVXgqkAwflt0yIiXvZAtFjFiEVss4nkFqgXIca4t09gNOLIo5ka0AtcFqKvl36Wd_G37BWw1-4_tuP3QaZ3CtmvPyOTyVaGUTWb6DDble_Y6nZzbG_UJcA_CHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGrrZ7CvHYl2USilUxduSTbIglG1ptxb_vUm626roQTwnDOFLhvkm8wK4jFLqqpD7mFLOsSdCiZmUBJu_ZF-ozHcyzw6bCHu96OWF9T9V8dts9yokuahpMF2a8qI1lllrWfhmmIiJP7rYcnA8X4cNzyTSG3998LyMI7ihndBlZtBjTxvrsmzmZxlfTdOKb34LkVrLE9f_f-Zd2ClZJ2ovnskerKl8H-rVRAdUKvgBtNqoPxq-m1Jlvb2rJrkaIk1rUTwz-TBagEAdZfp1j3I0UMUhPMW3jzd3uBypgAUlXoFJqh1Spo2-JiYOi4TkgVZQSbSfqu8qyDxfMsUd00RMr7mMpylxBVFcOz7Mkxk9glo-ytUxoCzjlMlIcO0iehEhjDNfRjQQDqeaRdAGXFVoJuNF54xk2SPZYpFoLBKLRTJvQLMCPCm1aJq4AdPsiroRacB1BfBq-XdpJ3_bfgFb_U6cPNz3uqew7dorMil-TagVk5k6g03xVrxOJ-f2cX0A7rPLAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Polynomial+Kernel+for+Funnel+Arc+Deletion+Set&rft.jtitle=Algorithmica&rft.au=Garlet+Milani%2C+Marcelo&rft.date=2022-08-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=8&rft.spage=2358&rft.epage=2378&rft_id=info:doi/10.1007%2Fs00453-022-00960-w&rft.externalDocID=10_1007_s00453_022_00960_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon