Forecasting Algorithm Based on Temperature Error Prediction Using Kalman Filter for Management System Development

The study offers a new method of collection and processing of meteorological data from the meteorological service based on observations and correction of numerical weather forecast errors using a new prediction algorithm. This algorithm vastly increases the accuracy of the short-term forecast of out...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Latvian journal of physics and technical sciences Ročník 58; číslo 5; s. 38 - 49
Hlavní autoři: Bogdanovs, N, Belinskis, R, Bistrovs, V, Petersons, E, Ipatovs, A
Médium: Journal Article
Jazyk:angličtina
Vydáno: Riga De Gruyter Brill Sp. z o.o., Paradigm Publishing Services 01.10.2021
Témata:
ISSN:0868-8257, 2199-6156
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The study offers a new method of collection and processing of meteorological data from the meteorological service based on observations and correction of numerical weather forecast errors using a new prediction algorithm. This algorithm vastly increases the accuracy of the short-term forecast of outdoor air temperature, which is subject to uncertainty due to the stochastic nature of atmospheric processes. Processing of temperature data using Kalman filter provides the decrease in predicted temperature errors. The main setup methods of Kalman filter have been examined. The article also describes the implementation of accuracy improving algorithm of predicted temperature using Python.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0868-8257
2199-6156
DOI:10.2478/lpts-2021-0038