A novel wasserstein autoencoder-enhanced thermo-mechanical coupled reduced-order model for high pressure turbine blades life monitoring

To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomecha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 152; s. 110819
Hlavní autoři: Wang, Rongqiao, Chen, Ruoqi, Zhao, Yan, Shen, Tianbao, Chen, Gaoxiang, Hu, Dianyin, Jiang, Zhimin, Wang, Xuemin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.07.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomechanical coupling fields is developed by introducing the deep learning model of WAE in the proper orthogonal decomposition (POD) method. The proposed method improves the prediction accuracy of loads in locally focused regions and generalization performance. The accuracy and efficiency of this method are validated through 30 sets of validation conditions. Results indicate that the proposed approach achieves higher accuracy and better generalization performance than traditional POD-based methods, with errors maintained within 10. Additionally, computational speed is improved by nearly 1400 times compared to conventional numerical methods. The WAE-enhanced ROM is applied for load and life assessment of the HPT blades throughout their service life. The evaluation time for a single aeroengine performance parameter is 1.7 s, and for a single flight evaluation, it is 67 s, which highlights the effectiveness of the proposed method in enabling the assessment of the loads and remaining life of HPT blades. •A novel WAE enhanced thermal coupling ROM is proposed for efficient HPT blade life assessment.•Through the WAE network, lots of POD modes are preserved and compressed into a low-dimensional latent variable space.•The ANN maps the performance parameters to the mode coefficients for fast and accurate temperature and stress evaluation.•The ROM is evaluated in 1.7 seconds for each operating condition and 67 seconds for each flight.
AbstractList To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomechanical coupling fields is developed by introducing the deep learning model of WAE in the proper orthogonal decomposition (POD) method. The proposed method improves the prediction accuracy of loads in locally focused regions and generalization performance. The accuracy and efficiency of this method are validated through 30 sets of validation conditions. Results indicate that the proposed approach achieves higher accuracy and better generalization performance than traditional POD-based methods, with errors maintained within 10. Additionally, computational speed is improved by nearly 1400 times compared to conventional numerical methods. The WAE-enhanced ROM is applied for load and life assessment of the HPT blades throughout their service life. The evaluation time for a single aeroengine performance parameter is 1.7 s, and for a single flight evaluation, it is 67 s, which highlights the effectiveness of the proposed method in enabling the assessment of the loads and remaining life of HPT blades. •A novel WAE enhanced thermal coupling ROM is proposed for efficient HPT blade life assessment.•Through the WAE network, lots of POD modes are preserved and compressed into a low-dimensional latent variable space.•The ANN maps the performance parameters to the mode coefficients for fast and accurate temperature and stress evaluation.•The ROM is evaluated in 1.7 seconds for each operating condition and 67 seconds for each flight.
ArticleNumber 110819
Author Hu, Dianyin
Chen, Gaoxiang
Jiang, Zhimin
Wang, Xuemin
Shen, Tianbao
Wang, Rongqiao
Chen, Ruoqi
Zhao, Yan
Author_xml – sequence: 1
  givenname: Rongqiao
  surname: Wang
  fullname: Wang, Rongqiao
  organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
– sequence: 2
  givenname: Ruoqi
  orcidid: 0009-0005-0423-2217
  surname: Chen
  fullname: Chen, Ruoqi
  organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
– sequence: 3
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  email: zy_buaa@buaa.edu.cn
  organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
– sequence: 4
  givenname: Tianbao
  surname: Shen
  fullname: Shen, Tianbao
  organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China
– sequence: 5
  givenname: Gaoxiang
  surname: Chen
  fullname: Chen, Gaoxiang
  email: chengx@buaa.edu.cn
  organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China
– sequence: 6
  givenname: Dianyin
  surname: Hu
  fullname: Hu, Dianyin
  organization: Beijing Key Laboratory of Aeroengine Structure and Strength, Beijing, 100191, China
– sequence: 7
  givenname: Zhimin
  surname: Jiang
  fullname: Jiang, Zhimin
  organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China
– sequence: 8
  givenname: Xuemin
  surname: Wang
  fullname: Wang, Xuemin
  organization: China AECC Sichuan Gas Turbine Establishment, Chengdu, 610000, China
BookMark eNqFkM1qAjEQx3OwULV9hZIXWJu47hf0UJF-gdCL9zBmJxpZk2WStfQJ-tqN2F566Wn-zMxvYH4TNnLeIWN3UsykkOX9YYZuB30PdjYX82ImpahlM2Jj0RTzTDZVec0mIRyEEHm9KMfsa8mdP2HHPyAEpBDROg5D9Oi0b5EydHtwGlse90hHnx1Rp4bV0HHth75LE8J2SBuZpwTwY8I6bjzxvd3teU8YwkDI40Bb65BvO2gx8M4aTLvORk_W7W7YlYEu4O1PnbLN89Nm9Zqt31_eVst1pnO5iJmcN6IAWJSgURcNpgw5gMixyk1VgGgEtEZWVQ1Vk1emTFnUpalNIgqZT1l5OavJh0BoVE_2CPSppFBng-qgfg2qs0F1MZjAhz-gthGi9S4S2O5__PGCY_rtZJFU0BbPXi2hjqr19r8T31oNmfA
CitedBy_id crossref_primary_10_1016_j_cja_2025_103633
Cites_doi 10.1016/j.cma.2018.10.029
10.1007/s10915-022-01899-4
10.1016/j.camwa.2024.03.021
10.1016/j.camwa.2021.11.001
10.1038/s41598-024-56118-x
10.1016/j.ijheatmasstransfer.2023.124699
10.1137/17M1140480
10.1016/j.apenergy.2017.04.048
10.3390/app10238541
10.3389/fenrg.2023.1128201
10.1016/j.cma.2015.12.029
10.3934/mine.2023096
10.1016/j.engfailanal.2023.107251
10.1016/j.engappai.2024.109400
10.1016/j.jcp.2016.10.068
10.1016/j.yofte.2024.104121
10.1016/j.neunet.2025.107208
10.1115/1.2804529
10.1016/j.jcp.2023.112621
10.1016/j.engappai.2023.106936
10.1080/17415977.2012.693080
10.1016/j.cma.2021.114181
10.3390/app12094318
10.3934/mine.2022021
10.2514/1.J062894
10.1016/j.ast.2016.12.009
10.1016/j.jcp.2019.07.053
10.1016/j.neucom.2019.06.096
10.1016/j.engappai.2023.107769
10.1080/10618562.2014.918695
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.110819
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_110819
S095219762500819X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c314t-12905aa46acec59e5aaa3aa03e73f75a090adf1778a7937f6f17086f8f6ac513
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 06:53:34 EST 2025
Tue Nov 18 22:36:14 EST 2025
Sat Jun 07 17:01:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Wasserstein autoencoder
Loading calculation
High-pressure turbine blade
Lifetime monitoring
Reduced order model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-12905aa46acec59e5aaa3aa03e73f75a090adf1778a7937f6f17086f8f6ac513
ORCID 0009-0005-0423-2217
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_110819
crossref_citationtrail_10_1016_j_engappai_2025_110819
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110819
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Chen, Liu (bib7) 2022; 12
Glaessgen, Stargel (bib16) 2012
Grelotti, Glanovsky (bib17) 2010
Jiang, Pan, Jiang (bib22) 2023; 217
Chen, Ren (bib6) 2010; vol. 4
Li, Sun, Xia (bib24) 2016; 33
Cui, Wei, Sun (bib9) 2022; 43
Duan, Hesthaven (bib11) 2024; 497
Liu, Wang, Jiang (bib25) 2024; 138
Luo, Wang, Xu (bib26) 2023; 35
Volponi (bib40) 2013
Tsoutsanis, Qureshi, Hesham (bib37) 2023; 126
Tuegel, Ingraffea, Eason (bib38) 2011; 2011
Xiao, Yang, Fang (bib43) 2017; 330
Tahan, Tsoutsanis, Muhammad (bib36) 2017; 198
Benner, Schilders, Grivet-Talocia (bib4) 2021
Salvador, Dedè, Manzoni (bib32) 2021; 104
Saxena, Goebel, Simon (bib33) 2008
Wang, Nguyen (bib41) 2025; 185
Zhang, Jin, Zhao (bib46) 2025
Simpson, Dervilis, Couturier (bib34) 2023; 11
Simpson, Vlachas, Garland (bib35) 2024; 14
Noorizadegan, Chen, Cavoretto (bib27) 2024; 164
Fresca, Manzoni (bib13) 2022; 388
Arias, Kulkarni, Goebel (bib1) 2021; 6
García-Martínez, del Hoyo Gordillo, Valles González (bib15) 2023; 149
Xu, Keshmiri, Wang (bib44) 2019; 363
Zhao, Gao, Hu (bib47) 2025; 90
Rogers, Kassab, Divo (bib31) 2012; 20
Zheng, Yao, Xu (bib48) 2023; 61
Bonacuse, Kalluri (bib5) 1995; 117
Yu, Yan, Jiang (bib45) 2019; 397
da Silva, Tomita, Bringhenti (bib10) 2017; 63
Issa, Hambali, Biazar (bib21) 2020; 4
Xiao, Yang, Fang (bib42) 2016; 303
Kilic, Villareal-Valderrama, Ayar (bib23) 2024; 130
Arias, Kulkarni, Goebel (bib2) 2022; 217
Qu (bib29) 2013
Halder, Fidkowski, Maki (bib19) 2021
Quarteroni, Manzoni, Negri (bib30) 2015
Fresca, Fatone, Manzoni (bib14) 2023; 5
Franz, Zimmermann, Görtz (bib12) 2014; 28
Guo, Hesthaven (bib18) 2019; 345
Batselier, Yu, Daniel (bib3) 2018; 39
Ortali, Demo, Rozza (bib28) 2022; 4
Vasilyev, Nikolaev, Raevskiy (bib39) 2020; 10
Cheng, Xu, Feng (bib8) 2022; 92
Hesthaven, Rozza, Stamm (bib20) 2016
Fresca (10.1016/j.engappai.2025.110819_bib14) 2023; 5
Cui (10.1016/j.engappai.2025.110819_bib9) 2022; 43
Franz (10.1016/j.engappai.2025.110819_bib12) 2014; 28
Bonacuse (10.1016/j.engappai.2025.110819_bib5) 1995; 117
Guo (10.1016/j.engappai.2025.110819_bib18) 2019; 345
Kilic (10.1016/j.engappai.2025.110819_bib23) 2024; 130
García-Martínez (10.1016/j.engappai.2025.110819_bib15) 2023; 149
Glaessgen (10.1016/j.engappai.2025.110819_bib16) 2012
Batselier (10.1016/j.engappai.2025.110819_bib3) 2018; 39
Ortali (10.1016/j.engappai.2025.110819_bib28) 2022; 4
Tuegel (10.1016/j.engappai.2025.110819_bib38) 2011; 2011
Liu (10.1016/j.engappai.2025.110819_bib25) 2024; 138
Vasilyev (10.1016/j.engappai.2025.110819_bib39) 2020; 10
da Silva (10.1016/j.engappai.2025.110819_bib10) 2017; 63
Fresca (10.1016/j.engappai.2025.110819_bib13) 2022; 388
Issa (10.1016/j.engappai.2025.110819_bib21) 2020; 4
Arias (10.1016/j.engappai.2025.110819_bib1) 2021; 6
Zhang (10.1016/j.engappai.2025.110819_bib46) 2025
Cheng (10.1016/j.engappai.2025.110819_bib8) 2022; 92
Wang (10.1016/j.engappai.2025.110819_bib41) 2025; 185
Duan (10.1016/j.engappai.2025.110819_bib11) 2024; 497
Arias (10.1016/j.engappai.2025.110819_bib2) 2022; 217
Chen (10.1016/j.engappai.2025.110819_bib6) 2010; vol. 4
Chen (10.1016/j.engappai.2025.110819_bib7) 2022; 12
Tsoutsanis (10.1016/j.engappai.2025.110819_bib37) 2023; 126
Grelotti (10.1016/j.engappai.2025.110819_bib17) 2010
Volponi (10.1016/j.engappai.2025.110819_bib40) 2013
Qu (10.1016/j.engappai.2025.110819_bib29) 2013
Quarteroni (10.1016/j.engappai.2025.110819_bib30) 2015
Saxena (10.1016/j.engappai.2025.110819_bib33) 2008
Salvador (10.1016/j.engappai.2025.110819_bib32) 2021; 104
Simpson (10.1016/j.engappai.2025.110819_bib34) 2023; 11
Xu (10.1016/j.engappai.2025.110819_bib44) 2019; 363
Yu (10.1016/j.engappai.2025.110819_bib45) 2019; 397
Zheng (10.1016/j.engappai.2025.110819_bib48) 2023; 61
Tahan (10.1016/j.engappai.2025.110819_bib36) 2017; 198
Benner (10.1016/j.engappai.2025.110819_bib4) 2021
Li (10.1016/j.engappai.2025.110819_bib24) 2016; 33
Noorizadegan (10.1016/j.engappai.2025.110819_bib27) 2024; 164
Rogers (10.1016/j.engappai.2025.110819_bib31) 2012; 20
Zhao (10.1016/j.engappai.2025.110819_bib47) 2025; 90
Hesthaven (10.1016/j.engappai.2025.110819_bib20) 2016
Halder (10.1016/j.engappai.2025.110819_bib19) 2021
Luo (10.1016/j.engappai.2025.110819_bib26) 2023; 35
Simpson (10.1016/j.engappai.2025.110819_bib35) 2024; 14
Xiao (10.1016/j.engappai.2025.110819_bib43) 2017; 330
Jiang (10.1016/j.engappai.2025.110819_bib22) 2023; 217
Xiao (10.1016/j.engappai.2025.110819_bib42) 2016; 303
References_xml – volume: 6
  year: 2021
  ident: bib1
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
– volume: 63
  start-page: 33
  year: 2017
  end-page: 40
  ident: bib10
  article-title: Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency
  publication-title: Aero. Sci. Technol.
– volume: 198
  start-page: 122
  year: 2017
  end-page: 144
  ident: bib36
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl. Energy
– volume: 397
  year: 2019
  ident: bib45
  article-title: Adaptive non-intrusive reduced order modeling for compressible flows
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib33
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation[C]
  publication-title: 2008 International Conference on Prognostics and Health Management
– volume: 4
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib28
  article-title: A Gaussian process regression approach within a data-driven pod framework for engineering problems in fluid dynamics
  publication-title: Math. Eng.
– volume: 149
  year: 2023
  ident: bib15
  article-title: Failure study of an aircraft engine high pressure turbine (HPT) first stage blade
  publication-title: Eng. Fail. Anal.
– volume: 14
  start-page: 6091
  year: 2024
  ident: bib35
  article-title: VpROM: a novel variational autoencoder-boosted reduced order model for the treatment of parametric dependencies in nonlinear systems
  publication-title: Sci. Rep.
– volume: 217
  year: 2022
  ident: bib2
  article-title: Fusing physics-based and deep learning models for prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 5
  start-page: 1
  year: 2023
  end-page: 36
  ident: bib14
  article-title: Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models
  publication-title: Math. Eng.
– year: 2013
  ident: bib40
  article-title: Gas turbine engine health management: past, present and future trends[C]
  publication-title: Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
– volume: 164
  start-page: 12
  year: 2024
  end-page: 20
  ident: bib27
  article-title: Efficient truncated randomized SVD for mesh-free kernel methodsImage 1
  publication-title: Comput. Math. Appl.
– year: 2010
  ident: bib17
  article-title: Usage-based life prediction and fleet management for gas turbine engines[C]
  publication-title: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
– volume: 126
  year: 2023
  ident: bib37
  article-title: Performance diagnostics of gas turbines operating under transient conditions based on dynamic engine model and artificial neural networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 130
  year: 2024
  ident: bib23
  article-title: Deep learning-based forecasting modeling of micro gas turbine performance projection: an experimental approach
  publication-title: Eng. Appl. Artif. Intell.
– volume: 20
  start-page: 749
  year: 2012
  end-page: 767
  ident: bib31
  article-title: An inverse POD-RBF network approach to parameter estimation in mechanics
  publication-title: Inverse Probl. Sci. Eng.
– volume: 388
  year: 2022
  ident: bib13
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2025
  ident: bib46
  article-title: Damage simulation and experimental verification of thermomechanical fatigue in nickel-based single crystal turbine blades considering the influence of transverse crystal orientation
  publication-title: Int. J. Fatig.
– volume: vol. 4
  year: 2010
  ident: bib6
  publication-title: Data Book of Materials for Aero Engine Design
– volume: 345
  start-page: 75
  year: 2019
  end-page: 99
  ident: bib18
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 33
  start-page: 681
  year: 2016
  ident: bib24
  article-title: Decoupling method for transient thermal status of low supersonic aircrafts
  publication-title: Chin. J. Comput. Phys.
– year: 2021
  ident: bib19
  article-title: Local non-intrusive reduced order modeling using isomap
  publication-title: AIAA SCITECH 2022 Forum
– volume: 28
  start-page: 106
  year: 2014
  end-page: 121
  ident: bib12
  article-title: Interpolation-based reduced-order modelling for steady transonic flows via manifold learning
  publication-title: Int. J. Comput. Fluid Dynam.
– volume: 185
  year: 2025
  ident: bib41
  article-title: Deterministic Autoencoder using Wasserstein loss for tabular data generation
  publication-title: Neural Netw.
– volume: 39
  start-page: 1221
  year: 2018
  end-page: 1244
  ident: bib3
  article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 4
  start-page: 147
  year: 2020
  end-page: 157
  ident: bib21
  article-title: An algorithm for choosing best shape parameter for numerical solution of partial differential equation via inverse multiquadric radial basis function
  publication-title: J. Mass Spectrom.
– volume: 11
  year: 2023
  ident: bib34
  article-title: Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme
  publication-title: Front. Energy Res.
– volume: 10
  start-page: 8541
  year: 2020
  ident: bib39
  article-title: Residual life prediction of gas-engine turbine blades based on damage surrogate-assisted modeling
  publication-title: Appl. Sci.
– volume: 138
  year: 2024
  ident: bib25
  article-title: A parallel and multi-scale probabilistic temporal convolutional neural networks for forecasting the key monitoring parameters of gas turbine
  publication-title: Eng. Appl. Artif. Intell.
– volume: 90
  year: 2025
  ident: bib47
  article-title: Online monitoring of fatigue crack under variable amplitude loading driven by multispectral features fusion of FBG sensors
  publication-title: Opt. Fiber Technol.
– year: 2016
  ident: bib20
  article-title: Certified Reduced Basis Methods for Parametrized Partial Differential equations[M]
– volume: 35
  year: 2023
  ident: bib26
  article-title: Flow reconstruction from sparse sensors based on reduced-order autoencoder state estimation
  publication-title: Phys. Fluids
– volume: 117
  start-page: 191
  year: 1995
  end-page: 199
  ident: bib5
  article-title: Elevated temperature axial and torsional fatigue behavior of haynes 188
  publication-title: J. Eng. Mater. Technol.
– volume: 12
  start-page: 4318
  year: 2022
  ident: bib7
  article-title: Reliability Prediction method for low-cycle fatigue life of compressor disks based on the fusion of simulation and zero-failure data
  publication-title: Appl. Sci.
– year: 2013
  ident: bib29
  article-title: Model Order Reduction Techniques with Applications in Finite Element analysis[M]
– year: 2012
  ident: bib16
  article-title: The digital twin paradigm for future NASA and U.S. Air force vehicles[C]
  publication-title: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
– volume: 303
  start-page: 35
  year: 2016
  end-page: 54
  ident: bib42
  article-title: Non-intrusive reduced order modelling of fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 363
  start-page: 195
  year: 2019
  end-page: 204
  ident: bib44
  article-title: Stacked wasserstein autoencoder
  publication-title: Neurocomputing
– volume: 104
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib32
  article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks
  publication-title: Comput. Math. Appl.
– year: 2021
  ident: bib4
  article-title: Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms
– year: 2015
  ident: bib30
  article-title: Reduced Basis Methods for Partial Differential equations[M]
– volume: 330
  start-page: 221
  year: 2017
  end-page: 244
  ident: bib43
  article-title: A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting
  publication-title: J. Comput. Phys.
– volume: 217
  year: 2023
  ident: bib22
  article-title: Data-driven physical fields reconstruction of supercritical-pressure flow in regenerative cooling channel using POD-AE reduced-order model
  publication-title: Int. J. Heat Mass Tran.
– volume: 92
  start-page: 64
  year: 2022
  ident: bib8
  article-title: Model order reduction method based on machine learning for parameterized time-dependent partial differential equations
  publication-title: J. Sci. Comput.
– volume: 43
  start-page: 59
  year: 2022
  end-page: 71
  ident: bib9
  article-title: Research on the fast prediction method of three-dimensional flow field of E3 high-pressure turbine
  publication-title: Propuls. Tech.
– volume: 61
  start-page: 5498
  year: 2023
  end-page: 5513
  ident: bib48
  article-title: Nonlinear manifold learning and model reduction for transonic flows
  publication-title: AIAA J.
– volume: 497
  year: 2024
  ident: bib11
  article-title: Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems
  publication-title: J. Comput. Phys.
– volume: 2011
  year: 2011
  ident: bib38
  article-title: Reengineering aircraft structural life prediction using a digital twin
  publication-title: Int. j. aerosp. eng.
– volume: 217
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib2
  article-title: Fusing physics-based and deep learning models for prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 345
  start-page: 75
  year: 2019
  ident: 10.1016/j.engappai.2025.110819_bib18
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.029
– year: 2021
  ident: 10.1016/j.engappai.2025.110819_bib4
– volume: 33
  start-page: 681
  issue: 6
  year: 2016
  ident: 10.1016/j.engappai.2025.110819_bib24
  article-title: Decoupling method for transient thermal status of low supersonic aircrafts
  publication-title: Chin. J. Comput. Phys.
– year: 2015
  ident: 10.1016/j.engappai.2025.110819_bib30
– volume: 92
  start-page: 64
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib8
  article-title: Model order reduction method based on machine learning for parameterized time-dependent partial differential equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01899-4
– volume: 164
  start-page: 12
  year: 2024
  ident: 10.1016/j.engappai.2025.110819_bib27
  article-title: Efficient truncated randomized SVD for mesh-free kernel methodsImage 1
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2024.03.021
– year: 2021
  ident: 10.1016/j.engappai.2025.110819_bib19
  article-title: Local non-intrusive reduced order modeling using isomap
– volume: 104
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.110819_bib32
  article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2021.11.001
– volume: 14
  start-page: 6091
  issue: 1
  year: 2024
  ident: 10.1016/j.engappai.2025.110819_bib35
  article-title: VpROM: a novel variational autoencoder-boosted reduced order model for the treatment of parametric dependencies in nonlinear systems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56118-x
– volume: 217
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib22
  article-title: Data-driven physical fields reconstruction of supercritical-pressure flow in regenerative cooling channel using POD-AE reduced-order model
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2023.124699
– volume: 39
  start-page: 1221
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2025.110819_bib3
  article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/17M1140480
– volume: 198
  start-page: 122
  year: 2017
  ident: 10.1016/j.engappai.2025.110819_bib36
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.048
– year: 2025
  ident: 10.1016/j.engappai.2025.110819_bib46
  article-title: Damage simulation and experimental verification of thermomechanical fatigue in nickel-based single crystal turbine blades considering the influence of transverse crystal orientation
  publication-title: Int. J. Fatig.
– volume: vol. 4
  year: 2010
  ident: 10.1016/j.engappai.2025.110819_bib6
– volume: 43
  start-page: 59
  issue: 11
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib9
  article-title: Research on the fast prediction method of three-dimensional flow field of E3 high-pressure turbine
  publication-title: Propuls. Tech.
– volume: 10
  start-page: 8541
  issue: 23
  year: 2020
  ident: 10.1016/j.engappai.2025.110819_bib39
  article-title: Residual life prediction of gas-engine turbine blades based on damage surrogate-assisted modeling
  publication-title: Appl. Sci.
  doi: 10.3390/app10238541
– volume: 11
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib34
  article-title: Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1128201
– volume: 303
  start-page: 35
  year: 2016
  ident: 10.1016/j.engappai.2025.110819_bib42
  article-title: Non-intrusive reduced order modelling of fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.12.029
– year: 2012
  ident: 10.1016/j.engappai.2025.110819_bib16
  article-title: The digital twin paradigm for future NASA and U.S. Air force vehicles[C]
– volume: 5
  start-page: 1
  issue: 6
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib14
  article-title: Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models
  publication-title: Math. Eng.
  doi: 10.3934/mine.2023096
– year: 2016
  ident: 10.1016/j.engappai.2025.110819_bib20
– volume: 6
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.110819_bib1
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
– volume: 149
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib15
  article-title: Failure study of an aircraft engine high pressure turbine (HPT) first stage blade
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107251
– volume: 138
  year: 2024
  ident: 10.1016/j.engappai.2025.110819_bib25
  article-title: A parallel and multi-scale probabilistic temporal convolutional neural networks for forecasting the key monitoring parameters of gas turbine
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109400
– volume: 330
  start-page: 221
  year: 2017
  ident: 10.1016/j.engappai.2025.110819_bib43
  article-title: A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.068
– volume: 90
  year: 2025
  ident: 10.1016/j.engappai.2025.110819_bib47
  article-title: Online monitoring of fatigue crack under variable amplitude loading driven by multispectral features fusion of FBG sensors
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.104121
– volume: 185
  year: 2025
  ident: 10.1016/j.engappai.2025.110819_bib41
  article-title: Deterministic Autoencoder using Wasserstein loss for tabular data generation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2025.107208
– volume: 117
  start-page: 191
  issue: 2
  year: 1995
  ident: 10.1016/j.engappai.2025.110819_bib5
  article-title: Elevated temperature axial and torsional fatigue behavior of haynes 188
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.2804529
– volume: 497
  year: 2024
  ident: 10.1016/j.engappai.2025.110819_bib11
  article-title: Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112621
– volume: 126
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib37
  article-title: Performance diagnostics of gas turbines operating under transient conditions based on dynamic engine model and artificial neural networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106936
– volume: 20
  start-page: 749
  issue: 5
  year: 2012
  ident: 10.1016/j.engappai.2025.110819_bib31
  article-title: An inverse POD-RBF network approach to parameter estimation in mechanics
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2012.693080
– start-page: 1
  year: 2008
  ident: 10.1016/j.engappai.2025.110819_bib33
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation[C]
– volume: 388
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib13
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114181
– volume: 12
  start-page: 4318
  issue: 9
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib7
  article-title: Reliability Prediction method for low-cycle fatigue life of compressor disks based on the fusion of simulation and zero-failure data
  publication-title: Appl. Sci.
  doi: 10.3390/app12094318
– volume: 2011
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2025.110819_bib38
  article-title: Reengineering aircraft structural life prediction using a digital twin
  publication-title: Int. j. aerosp. eng.
– volume: 4
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2025.110819_bib28
  article-title: A Gaussian process regression approach within a data-driven pod framework for engineering problems in fluid dynamics
  publication-title: Math. Eng.
  doi: 10.3934/mine.2022021
– year: 2013
  ident: 10.1016/j.engappai.2025.110819_bib29
– year: 2010
  ident: 10.1016/j.engappai.2025.110819_bib17
  article-title: Usage-based life prediction and fleet management for gas turbine engines[C]
– year: 2013
  ident: 10.1016/j.engappai.2025.110819_bib40
  article-title: Gas turbine engine health management: past, present and future trends[C]
– volume: 61
  start-page: 5498
  issue: 12
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib48
  article-title: Nonlinear manifold learning and model reduction for transonic flows
  publication-title: AIAA J.
  doi: 10.2514/1.J062894
– volume: 63
  start-page: 33
  year: 2017
  ident: 10.1016/j.engappai.2025.110819_bib10
  article-title: Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2016.12.009
– volume: 397
  year: 2019
  ident: 10.1016/j.engappai.2025.110819_bib45
  article-title: Adaptive non-intrusive reduced order modeling for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.053
– volume: 363
  start-page: 195
  year: 2019
  ident: 10.1016/j.engappai.2025.110819_bib44
  article-title: Stacked wasserstein autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.096
– volume: 130
  year: 2024
  ident: 10.1016/j.engappai.2025.110819_bib23
  article-title: Deep learning-based forecasting modeling of micro gas turbine performance projection: an experimental approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107769
– volume: 35
  issue: 7
  year: 2023
  ident: 10.1016/j.engappai.2025.110819_bib26
  article-title: Flow reconstruction from sparse sensors based on reduced-order autoencoder state estimation
  publication-title: Phys. Fluids
– volume: 28
  start-page: 106
  issue: 3–4
  year: 2014
  ident: 10.1016/j.engappai.2025.110819_bib12
  article-title: Interpolation-based reduced-order modelling for steady transonic flows via manifold learning
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2014.918695
– volume: 4
  start-page: 147
  year: 2020
  ident: 10.1016/j.engappai.2025.110819_bib21
  article-title: An algorithm for choosing best shape parameter for numerical solution of partial differential equation via inverse multiquadric radial basis function
  publication-title: J. Mass Spectrom.
SSID ssj0003846
Score 2.4369745
Snippet To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110819
SubjectTerms High-pressure turbine blade
Lifetime monitoring
Loading calculation
Reduced order model
Wasserstein autoencoder
Title A novel wasserstein autoencoder-enhanced thermo-mechanical coupled reduced-order model for high pressure turbine blades life monitoring
URI https://dx.doi.org/10.1016/j.engappai.2025.110819
Volume 152
WOSCitedRecordID wos001472979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJN_DQm0BXi2WJR6NI0RZFUKQ-uCeBkqjUgSI58pL8Qb6rf9YZLpLSGE1z6EUgCA1leZ7I4XDmDSHvspQXRewJ5opIMLTAmYAdGJOTNMISIvBJKZ7Zr9HRUTyf82-DwS-bC7Mto6qKLy_58r-qGvpA2Zg6ewd1t4NCB7RB6XAFtcP1nxQ_dap6K0vnQqhMSqxm6YjNukbGylw2TFY_9ak_mn5nNTuTmPxriEI2y1JiPksOGs-Z4uXUxXJUOCJyGzsqchaPHWCxStFGTUuRy5VTLgoJ9-IU0dj10Lr8O9JDp39iroIQGhWtpGqH9OhBO0e_noyO6-rkfCHqLhxBz5fHm_p80fN-K8_vjw7y3819M_gMUiNunBx-iN5TnebZeit95nFdKqaduDX3rZl6MZ9Bz743VgXtoDgdyeoEXlIsRviIUSdwnYb7j-WxDVq08XCniR0nwXESPc49sudHIY-HZG_6-XD-pTUHglhni9k36KWp7_5Fuy2kntUze0wemu0KnWqYPSEDWT0lj8zWhZqFYQVdtjqI7XtGrqZUAZH2gEh3AZHeACI1QKTXgEgVECkAkSIQqQUiNUCkGogUgUg7ID4ns4-Hsw-fmCn7wbLAG68ZekZDIcYTkcks5BLaIhDCDWQUFFEoXO6KvPCiKBZI7lhMoA0b8yIuQCL0ghdkWNWV3Cc094OCu9JPvTESC6ZpnvJxARZxlrkZT8UBCe0_nWSGEh8rs5TJ33V9QN63cktNCnOrBLeKTIxpq03WBDB6i-zLOz_tFXnQfUSvyXDdbOQbcj_brher5q0B6G90D9Lh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+wasserstein+autoencoder-enhanced+thermo-mechanical+coupled+reduced-order+model+for+high+pressure+turbine+blades+life+monitoring&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Rongqiao&rft.au=Chen%2C+Ruoqi&rft.au=Zhao%2C+Yan&rft.au=Shen%2C+Tianbao&rft.date=2025-07-15&rft.issn=0952-1976&rft.volume=152&rft.spage=110819&rft_id=info:doi/10.1016%2Fj.engappai.2025.110819&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_110819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon