A novel wasserstein autoencoder-enhanced thermo-mechanical coupled reduced-order model for high pressure turbine blades life monitoring
To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomecha...
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 152; S. 110819 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.07.2025
|
| Schlagworte: | |
| ISSN: | 0952-1976 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomechanical coupling fields is developed by introducing the deep learning model of WAE in the proper orthogonal decomposition (POD) method. The proposed method improves the prediction accuracy of loads in locally focused regions and generalization performance. The accuracy and efficiency of this method are validated through 30 sets of validation conditions. Results indicate that the proposed approach achieves higher accuracy and better generalization performance than traditional POD-based methods, with errors maintained within 10. Additionally, computational speed is improved by nearly 1400 times compared to conventional numerical methods. The WAE-enhanced ROM is applied for load and life assessment of the HPT blades throughout their service life. The evaluation time for a single aeroengine performance parameter is 1.7 s, and for a single flight evaluation, it is 67 s, which highlights the effectiveness of the proposed method in enabling the assessment of the loads and remaining life of HPT blades.
•A novel WAE enhanced thermal coupling ROM is proposed for efficient HPT blade life assessment.•Through the WAE network, lots of POD modes are preserved and compressed into a low-dimensional latent variable space.•The ANN maps the performance parameters to the mode coefficients for fast and accurate temperature and stress evaluation.•The ROM is evaluated in 1.7 seconds for each operating condition and 67 seconds for each flight. |
|---|---|
| AbstractList | To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder (WAE)-enhanced thermodynamically coupled reduced-order model (ROM) is proposed in this paper. The advanced ROM for the nonlinear thermomechanical coupling fields is developed by introducing the deep learning model of WAE in the proper orthogonal decomposition (POD) method. The proposed method improves the prediction accuracy of loads in locally focused regions and generalization performance. The accuracy and efficiency of this method are validated through 30 sets of validation conditions. Results indicate that the proposed approach achieves higher accuracy and better generalization performance than traditional POD-based methods, with errors maintained within 10. Additionally, computational speed is improved by nearly 1400 times compared to conventional numerical methods. The WAE-enhanced ROM is applied for load and life assessment of the HPT blades throughout their service life. The evaluation time for a single aeroengine performance parameter is 1.7 s, and for a single flight evaluation, it is 67 s, which highlights the effectiveness of the proposed method in enabling the assessment of the loads and remaining life of HPT blades.
•A novel WAE enhanced thermal coupling ROM is proposed for efficient HPT blade life assessment.•Through the WAE network, lots of POD modes are preserved and compressed into a low-dimensional latent variable space.•The ANN maps the performance parameters to the mode coefficients for fast and accurate temperature and stress evaluation.•The ROM is evaluated in 1.7 seconds for each operating condition and 67 seconds for each flight. |
| ArticleNumber | 110819 |
| Author | Hu, Dianyin Chen, Gaoxiang Jiang, Zhimin Wang, Xuemin Shen, Tianbao Wang, Rongqiao Chen, Ruoqi Zhao, Yan |
| Author_xml | – sequence: 1 givenname: Rongqiao surname: Wang fullname: Wang, Rongqiao organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China – sequence: 2 givenname: Ruoqi orcidid: 0009-0005-0423-2217 surname: Chen fullname: Chen, Ruoqi organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China – sequence: 3 givenname: Yan surname: Zhao fullname: Zhao, Yan email: zy_buaa@buaa.edu.cn organization: School of Energy and Power Engineering, Beihang University, Beijing, 100191, China – sequence: 4 givenname: Tianbao surname: Shen fullname: Shen, Tianbao organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China – sequence: 5 givenname: Gaoxiang surname: Chen fullname: Chen, Gaoxiang email: chengx@buaa.edu.cn organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China – sequence: 6 givenname: Dianyin surname: Hu fullname: Hu, Dianyin organization: Beijing Key Laboratory of Aeroengine Structure and Strength, Beijing, 100191, China – sequence: 7 givenname: Zhimin surname: Jiang fullname: Jiang, Zhimin organization: Research Institute of Aeroengine, Beihang University, Beijing, 100191, China – sequence: 8 givenname: Xuemin surname: Wang fullname: Wang, Xuemin organization: China AECC Sichuan Gas Turbine Establishment, Chengdu, 610000, China |
| BookMark | eNqFkM1qAjEQx3OwULV9hZIXWJu47hf0UJF-gdCL9zBmJxpZk2WStfQJ-tqN2F566Wn-zMxvYH4TNnLeIWN3UsykkOX9YYZuB30PdjYX82ImpahlM2Jj0RTzTDZVec0mIRyEEHm9KMfsa8mdP2HHPyAEpBDROg5D9Oi0b5EydHtwGlse90hHnx1Rp4bV0HHth75LE8J2SBuZpwTwY8I6bjzxvd3teU8YwkDI40Bb65BvO2gx8M4aTLvORk_W7W7YlYEu4O1PnbLN89Nm9Zqt31_eVst1pnO5iJmcN6IAWJSgURcNpgw5gMixyk1VgGgEtEZWVQ1Vk1emTFnUpalNIgqZT1l5OavJh0BoVE_2CPSppFBng-qgfg2qs0F1MZjAhz-gthGi9S4S2O5__PGCY_rtZJFU0BbPXi2hjqr19r8T31oNmfA |
| CitedBy_id | crossref_primary_10_1016_j_cja_2025_103633 |
| Cites_doi | 10.1016/j.cma.2018.10.029 10.1007/s10915-022-01899-4 10.1016/j.camwa.2024.03.021 10.1016/j.camwa.2021.11.001 10.1038/s41598-024-56118-x 10.1016/j.ijheatmasstransfer.2023.124699 10.1137/17M1140480 10.1016/j.apenergy.2017.04.048 10.3390/app10238541 10.3389/fenrg.2023.1128201 10.1016/j.cma.2015.12.029 10.3934/mine.2023096 10.1016/j.engfailanal.2023.107251 10.1016/j.engappai.2024.109400 10.1016/j.jcp.2016.10.068 10.1016/j.yofte.2024.104121 10.1016/j.neunet.2025.107208 10.1115/1.2804529 10.1016/j.jcp.2023.112621 10.1016/j.engappai.2023.106936 10.1080/17415977.2012.693080 10.1016/j.cma.2021.114181 10.3390/app12094318 10.3934/mine.2022021 10.2514/1.J062894 10.1016/j.ast.2016.12.009 10.1016/j.jcp.2019.07.053 10.1016/j.neucom.2019.06.096 10.1016/j.engappai.2023.107769 10.1080/10618562.2014.918695 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.110819 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_110819 S095219762500819X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 ~G- 29G 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c314t-12905aa46acec59e5aaa3aa03e73f75a090adf1778a7937f6f17086f8f6ac513 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 06:53:34 EST 2025 Tue Nov 18 22:36:14 EST 2025 Sat Jun 07 17:01:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wasserstein autoencoder Loading calculation High-pressure turbine blade Lifetime monitoring Reduced order model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c314t-12905aa46acec59e5aaa3aa03e73f75a090adf1778a7937f6f17086f8f6ac513 |
| ORCID | 0009-0005-0423-2217 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_110819 crossref_citationtrail_10_1016_j_engappai_2025_110819 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110819 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Chen, Liu (bib7) 2022; 12 Glaessgen, Stargel (bib16) 2012 Grelotti, Glanovsky (bib17) 2010 Jiang, Pan, Jiang (bib22) 2023; 217 Chen, Ren (bib6) 2010; vol. 4 Li, Sun, Xia (bib24) 2016; 33 Cui, Wei, Sun (bib9) 2022; 43 Duan, Hesthaven (bib11) 2024; 497 Liu, Wang, Jiang (bib25) 2024; 138 Luo, Wang, Xu (bib26) 2023; 35 Volponi (bib40) 2013 Tsoutsanis, Qureshi, Hesham (bib37) 2023; 126 Tuegel, Ingraffea, Eason (bib38) 2011; 2011 Xiao, Yang, Fang (bib43) 2017; 330 Tahan, Tsoutsanis, Muhammad (bib36) 2017; 198 Benner, Schilders, Grivet-Talocia (bib4) 2021 Salvador, Dedè, Manzoni (bib32) 2021; 104 Saxena, Goebel, Simon (bib33) 2008 Wang, Nguyen (bib41) 2025; 185 Zhang, Jin, Zhao (bib46) 2025 Simpson, Dervilis, Couturier (bib34) 2023; 11 Simpson, Vlachas, Garland (bib35) 2024; 14 Noorizadegan, Chen, Cavoretto (bib27) 2024; 164 Fresca, Manzoni (bib13) 2022; 388 Arias, Kulkarni, Goebel (bib1) 2021; 6 García-Martínez, del Hoyo Gordillo, Valles González (bib15) 2023; 149 Xu, Keshmiri, Wang (bib44) 2019; 363 Zhao, Gao, Hu (bib47) 2025; 90 Rogers, Kassab, Divo (bib31) 2012; 20 Zheng, Yao, Xu (bib48) 2023; 61 Bonacuse, Kalluri (bib5) 1995; 117 Yu, Yan, Jiang (bib45) 2019; 397 da Silva, Tomita, Bringhenti (bib10) 2017; 63 Issa, Hambali, Biazar (bib21) 2020; 4 Xiao, Yang, Fang (bib42) 2016; 303 Kilic, Villareal-Valderrama, Ayar (bib23) 2024; 130 Arias, Kulkarni, Goebel (bib2) 2022; 217 Qu (bib29) 2013 Halder, Fidkowski, Maki (bib19) 2021 Quarteroni, Manzoni, Negri (bib30) 2015 Fresca, Fatone, Manzoni (bib14) 2023; 5 Franz, Zimmermann, Görtz (bib12) 2014; 28 Guo, Hesthaven (bib18) 2019; 345 Batselier, Yu, Daniel (bib3) 2018; 39 Ortali, Demo, Rozza (bib28) 2022; 4 Vasilyev, Nikolaev, Raevskiy (bib39) 2020; 10 Cheng, Xu, Feng (bib8) 2022; 92 Hesthaven, Rozza, Stamm (bib20) 2016 Fresca (10.1016/j.engappai.2025.110819_bib14) 2023; 5 Cui (10.1016/j.engappai.2025.110819_bib9) 2022; 43 Franz (10.1016/j.engappai.2025.110819_bib12) 2014; 28 Bonacuse (10.1016/j.engappai.2025.110819_bib5) 1995; 117 Guo (10.1016/j.engappai.2025.110819_bib18) 2019; 345 Kilic (10.1016/j.engappai.2025.110819_bib23) 2024; 130 García-Martínez (10.1016/j.engappai.2025.110819_bib15) 2023; 149 Glaessgen (10.1016/j.engappai.2025.110819_bib16) 2012 Batselier (10.1016/j.engappai.2025.110819_bib3) 2018; 39 Ortali (10.1016/j.engappai.2025.110819_bib28) 2022; 4 Tuegel (10.1016/j.engappai.2025.110819_bib38) 2011; 2011 Liu (10.1016/j.engappai.2025.110819_bib25) 2024; 138 Vasilyev (10.1016/j.engappai.2025.110819_bib39) 2020; 10 da Silva (10.1016/j.engappai.2025.110819_bib10) 2017; 63 Fresca (10.1016/j.engappai.2025.110819_bib13) 2022; 388 Issa (10.1016/j.engappai.2025.110819_bib21) 2020; 4 Arias (10.1016/j.engappai.2025.110819_bib1) 2021; 6 Zhang (10.1016/j.engappai.2025.110819_bib46) 2025 Cheng (10.1016/j.engappai.2025.110819_bib8) 2022; 92 Wang (10.1016/j.engappai.2025.110819_bib41) 2025; 185 Duan (10.1016/j.engappai.2025.110819_bib11) 2024; 497 Arias (10.1016/j.engappai.2025.110819_bib2) 2022; 217 Chen (10.1016/j.engappai.2025.110819_bib6) 2010; vol. 4 Chen (10.1016/j.engappai.2025.110819_bib7) 2022; 12 Tsoutsanis (10.1016/j.engappai.2025.110819_bib37) 2023; 126 Grelotti (10.1016/j.engappai.2025.110819_bib17) 2010 Volponi (10.1016/j.engappai.2025.110819_bib40) 2013 Qu (10.1016/j.engappai.2025.110819_bib29) 2013 Quarteroni (10.1016/j.engappai.2025.110819_bib30) 2015 Saxena (10.1016/j.engappai.2025.110819_bib33) 2008 Salvador (10.1016/j.engappai.2025.110819_bib32) 2021; 104 Simpson (10.1016/j.engappai.2025.110819_bib34) 2023; 11 Xu (10.1016/j.engappai.2025.110819_bib44) 2019; 363 Yu (10.1016/j.engappai.2025.110819_bib45) 2019; 397 Zheng (10.1016/j.engappai.2025.110819_bib48) 2023; 61 Tahan (10.1016/j.engappai.2025.110819_bib36) 2017; 198 Benner (10.1016/j.engappai.2025.110819_bib4) 2021 Li (10.1016/j.engappai.2025.110819_bib24) 2016; 33 Noorizadegan (10.1016/j.engappai.2025.110819_bib27) 2024; 164 Rogers (10.1016/j.engappai.2025.110819_bib31) 2012; 20 Zhao (10.1016/j.engappai.2025.110819_bib47) 2025; 90 Hesthaven (10.1016/j.engappai.2025.110819_bib20) 2016 Halder (10.1016/j.engappai.2025.110819_bib19) 2021 Luo (10.1016/j.engappai.2025.110819_bib26) 2023; 35 Simpson (10.1016/j.engappai.2025.110819_bib35) 2024; 14 Xiao (10.1016/j.engappai.2025.110819_bib43) 2017; 330 Jiang (10.1016/j.engappai.2025.110819_bib22) 2023; 217 Xiao (10.1016/j.engappai.2025.110819_bib42) 2016; 303 |
| References_xml | – volume: 6 year: 2021 ident: bib1 article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics publication-title: Data – volume: 63 start-page: 33 year: 2017 end-page: 40 ident: bib10 article-title: Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency publication-title: Aero. Sci. Technol. – volume: 198 start-page: 122 year: 2017 end-page: 144 ident: bib36 article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review publication-title: Appl. Energy – volume: 397 year: 2019 ident: bib45 article-title: Adaptive non-intrusive reduced order modeling for compressible flows publication-title: J. Comput. Phys. – start-page: 1 year: 2008 end-page: 9 ident: bib33 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation[C] publication-title: 2008 International Conference on Prognostics and Health Management – volume: 4 start-page: 1 year: 2022 end-page: 16 ident: bib28 article-title: A Gaussian process regression approach within a data-driven pod framework for engineering problems in fluid dynamics publication-title: Math. Eng. – volume: 149 year: 2023 ident: bib15 article-title: Failure study of an aircraft engine high pressure turbine (HPT) first stage blade publication-title: Eng. Fail. Anal. – volume: 14 start-page: 6091 year: 2024 ident: bib35 article-title: VpROM: a novel variational autoencoder-boosted reduced order model for the treatment of parametric dependencies in nonlinear systems publication-title: Sci. Rep. – volume: 217 year: 2022 ident: bib2 article-title: Fusing physics-based and deep learning models for prognostics publication-title: Reliab. Eng. Syst. Saf. – volume: 5 start-page: 1 year: 2023 end-page: 36 ident: bib14 article-title: Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models publication-title: Math. Eng. – year: 2013 ident: bib40 article-title: Gas turbine engine health management: past, present and future trends[C] publication-title: Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition – volume: 164 start-page: 12 year: 2024 end-page: 20 ident: bib27 article-title: Efficient truncated randomized SVD for mesh-free kernel methodsImage 1 publication-title: Comput. Math. Appl. – year: 2010 ident: bib17 article-title: Usage-based life prediction and fleet management for gas turbine engines[C] publication-title: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference – volume: 126 year: 2023 ident: bib37 article-title: Performance diagnostics of gas turbines operating under transient conditions based on dynamic engine model and artificial neural networks publication-title: Eng. Appl. Artif. Intell. – volume: 130 year: 2024 ident: bib23 article-title: Deep learning-based forecasting modeling of micro gas turbine performance projection: an experimental approach publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 749 year: 2012 end-page: 767 ident: bib31 article-title: An inverse POD-RBF network approach to parameter estimation in mechanics publication-title: Inverse Probl. Sci. Eng. – volume: 388 year: 2022 ident: bib13 article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition publication-title: Comput. Methods Appl. Mech. Eng. – year: 2025 ident: bib46 article-title: Damage simulation and experimental verification of thermomechanical fatigue in nickel-based single crystal turbine blades considering the influence of transverse crystal orientation publication-title: Int. J. Fatig. – volume: vol. 4 year: 2010 ident: bib6 publication-title: Data Book of Materials for Aero Engine Design – volume: 345 start-page: 75 year: 2019 end-page: 99 ident: bib18 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 33 start-page: 681 year: 2016 ident: bib24 article-title: Decoupling method for transient thermal status of low supersonic aircrafts publication-title: Chin. J. Comput. Phys. – year: 2021 ident: bib19 article-title: Local non-intrusive reduced order modeling using isomap publication-title: AIAA SCITECH 2022 Forum – volume: 28 start-page: 106 year: 2014 end-page: 121 ident: bib12 article-title: Interpolation-based reduced-order modelling for steady transonic flows via manifold learning publication-title: Int. J. Comput. Fluid Dynam. – volume: 185 year: 2025 ident: bib41 article-title: Deterministic Autoencoder using Wasserstein loss for tabular data generation publication-title: Neural Netw. – volume: 39 start-page: 1221 year: 2018 end-page: 1244 ident: bib3 article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD publication-title: SIAM J. Matrix Anal. Appl. – volume: 4 start-page: 147 year: 2020 end-page: 157 ident: bib21 article-title: An algorithm for choosing best shape parameter for numerical solution of partial differential equation via inverse multiquadric radial basis function publication-title: J. Mass Spectrom. – volume: 11 year: 2023 ident: bib34 article-title: Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme publication-title: Front. Energy Res. – volume: 10 start-page: 8541 year: 2020 ident: bib39 article-title: Residual life prediction of gas-engine turbine blades based on damage surrogate-assisted modeling publication-title: Appl. Sci. – volume: 138 year: 2024 ident: bib25 article-title: A parallel and multi-scale probabilistic temporal convolutional neural networks for forecasting the key monitoring parameters of gas turbine publication-title: Eng. Appl. Artif. Intell. – volume: 90 year: 2025 ident: bib47 article-title: Online monitoring of fatigue crack under variable amplitude loading driven by multispectral features fusion of FBG sensors publication-title: Opt. Fiber Technol. – year: 2016 ident: bib20 article-title: Certified Reduced Basis Methods for Parametrized Partial Differential equations[M] – volume: 35 year: 2023 ident: bib26 article-title: Flow reconstruction from sparse sensors based on reduced-order autoencoder state estimation publication-title: Phys. Fluids – volume: 117 start-page: 191 year: 1995 end-page: 199 ident: bib5 article-title: Elevated temperature axial and torsional fatigue behavior of haynes 188 publication-title: J. Eng. Mater. Technol. – volume: 12 start-page: 4318 year: 2022 ident: bib7 article-title: Reliability Prediction method for low-cycle fatigue life of compressor disks based on the fusion of simulation and zero-failure data publication-title: Appl. Sci. – year: 2013 ident: bib29 article-title: Model Order Reduction Techniques with Applications in Finite Element analysis[M] – year: 2012 ident: bib16 article-title: The digital twin paradigm for future NASA and U.S. Air force vehicles[C] publication-title: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference – volume: 303 start-page: 35 year: 2016 end-page: 54 ident: bib42 article-title: Non-intrusive reduced order modelling of fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Eng. – volume: 363 start-page: 195 year: 2019 end-page: 204 ident: bib44 article-title: Stacked wasserstein autoencoder publication-title: Neurocomputing – volume: 104 start-page: 1 year: 2021 end-page: 13 ident: bib32 article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks publication-title: Comput. Math. Appl. – year: 2021 ident: bib4 article-title: Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms – year: 2015 ident: bib30 article-title: Reduced Basis Methods for Partial Differential equations[M] – volume: 330 start-page: 221 year: 2017 end-page: 244 ident: bib43 article-title: A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting publication-title: J. Comput. Phys. – volume: 217 year: 2023 ident: bib22 article-title: Data-driven physical fields reconstruction of supercritical-pressure flow in regenerative cooling channel using POD-AE reduced-order model publication-title: Int. J. Heat Mass Tran. – volume: 92 start-page: 64 year: 2022 ident: bib8 article-title: Model order reduction method based on machine learning for parameterized time-dependent partial differential equations publication-title: J. Sci. Comput. – volume: 43 start-page: 59 year: 2022 end-page: 71 ident: bib9 article-title: Research on the fast prediction method of three-dimensional flow field of E3 high-pressure turbine publication-title: Propuls. Tech. – volume: 61 start-page: 5498 year: 2023 end-page: 5513 ident: bib48 article-title: Nonlinear manifold learning and model reduction for transonic flows publication-title: AIAA J. – volume: 497 year: 2024 ident: bib11 article-title: Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems publication-title: J. Comput. Phys. – volume: 2011 year: 2011 ident: bib38 article-title: Reengineering aircraft structural life prediction using a digital twin publication-title: Int. j. aerosp. eng. – volume: 217 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib2 article-title: Fusing physics-based and deep learning models for prognostics publication-title: Reliab. Eng. Syst. Saf. – volume: 345 start-page: 75 year: 2019 ident: 10.1016/j.engappai.2025.110819_bib18 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.029 – year: 2021 ident: 10.1016/j.engappai.2025.110819_bib4 – volume: 33 start-page: 681 issue: 6 year: 2016 ident: 10.1016/j.engappai.2025.110819_bib24 article-title: Decoupling method for transient thermal status of low supersonic aircrafts publication-title: Chin. J. Comput. Phys. – year: 2015 ident: 10.1016/j.engappai.2025.110819_bib30 – volume: 92 start-page: 64 issue: 2 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib8 article-title: Model order reduction method based on machine learning for parameterized time-dependent partial differential equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01899-4 – volume: 164 start-page: 12 year: 2024 ident: 10.1016/j.engappai.2025.110819_bib27 article-title: Efficient truncated randomized SVD for mesh-free kernel methodsImage 1 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2024.03.021 – year: 2021 ident: 10.1016/j.engappai.2025.110819_bib19 article-title: Local non-intrusive reduced order modeling using isomap – volume: 104 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2025.110819_bib32 article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2021.11.001 – volume: 14 start-page: 6091 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110819_bib35 article-title: VpROM: a novel variational autoencoder-boosted reduced order model for the treatment of parametric dependencies in nonlinear systems publication-title: Sci. Rep. doi: 10.1038/s41598-024-56118-x – volume: 217 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib22 article-title: Data-driven physical fields reconstruction of supercritical-pressure flow in regenerative cooling channel using POD-AE reduced-order model publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2023.124699 – volume: 39 start-page: 1221 issue: 3 year: 2018 ident: 10.1016/j.engappai.2025.110819_bib3 article-title: Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/17M1140480 – volume: 198 start-page: 122 year: 2017 ident: 10.1016/j.engappai.2025.110819_bib36 article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.048 – year: 2025 ident: 10.1016/j.engappai.2025.110819_bib46 article-title: Damage simulation and experimental verification of thermomechanical fatigue in nickel-based single crystal turbine blades considering the influence of transverse crystal orientation publication-title: Int. J. Fatig. – volume: vol. 4 year: 2010 ident: 10.1016/j.engappai.2025.110819_bib6 – volume: 43 start-page: 59 issue: 11 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib9 article-title: Research on the fast prediction method of three-dimensional flow field of E3 high-pressure turbine publication-title: Propuls. Tech. – volume: 10 start-page: 8541 issue: 23 year: 2020 ident: 10.1016/j.engappai.2025.110819_bib39 article-title: Residual life prediction of gas-engine turbine blades based on damage surrogate-assisted modeling publication-title: Appl. Sci. doi: 10.3390/app10238541 – volume: 11 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib34 article-title: Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme publication-title: Front. Energy Res. doi: 10.3389/fenrg.2023.1128201 – volume: 303 start-page: 35 year: 2016 ident: 10.1016/j.engappai.2025.110819_bib42 article-title: Non-intrusive reduced order modelling of fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.12.029 – year: 2012 ident: 10.1016/j.engappai.2025.110819_bib16 article-title: The digital twin paradigm for future NASA and U.S. Air force vehicles[C] – volume: 5 start-page: 1 issue: 6 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib14 article-title: Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models publication-title: Math. Eng. doi: 10.3934/mine.2023096 – year: 2016 ident: 10.1016/j.engappai.2025.110819_bib20 – volume: 6 issue: 1 year: 2021 ident: 10.1016/j.engappai.2025.110819_bib1 article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics publication-title: Data – volume: 149 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib15 article-title: Failure study of an aircraft engine high pressure turbine (HPT) first stage blade publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107251 – volume: 138 year: 2024 ident: 10.1016/j.engappai.2025.110819_bib25 article-title: A parallel and multi-scale probabilistic temporal convolutional neural networks for forecasting the key monitoring parameters of gas turbine publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109400 – volume: 330 start-page: 221 year: 2017 ident: 10.1016/j.engappai.2025.110819_bib43 article-title: A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.068 – volume: 90 year: 2025 ident: 10.1016/j.engappai.2025.110819_bib47 article-title: Online monitoring of fatigue crack under variable amplitude loading driven by multispectral features fusion of FBG sensors publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.104121 – volume: 185 year: 2025 ident: 10.1016/j.engappai.2025.110819_bib41 article-title: Deterministic Autoencoder using Wasserstein loss for tabular data generation publication-title: Neural Netw. doi: 10.1016/j.neunet.2025.107208 – volume: 117 start-page: 191 issue: 2 year: 1995 ident: 10.1016/j.engappai.2025.110819_bib5 article-title: Elevated temperature axial and torsional fatigue behavior of haynes 188 publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.2804529 – volume: 497 year: 2024 ident: 10.1016/j.engappai.2025.110819_bib11 article-title: Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112621 – volume: 126 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib37 article-title: Performance diagnostics of gas turbines operating under transient conditions based on dynamic engine model and artificial neural networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106936 – volume: 20 start-page: 749 issue: 5 year: 2012 ident: 10.1016/j.engappai.2025.110819_bib31 article-title: An inverse POD-RBF network approach to parameter estimation in mechanics publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415977.2012.693080 – start-page: 1 year: 2008 ident: 10.1016/j.engappai.2025.110819_bib33 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation[C] – volume: 388 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib13 article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114181 – volume: 12 start-page: 4318 issue: 9 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib7 article-title: Reliability Prediction method for low-cycle fatigue life of compressor disks based on the fusion of simulation and zero-failure data publication-title: Appl. Sci. doi: 10.3390/app12094318 – volume: 2011 issue: 1 year: 2011 ident: 10.1016/j.engappai.2025.110819_bib38 article-title: Reengineering aircraft structural life prediction using a digital twin publication-title: Int. j. aerosp. eng. – volume: 4 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.engappai.2025.110819_bib28 article-title: A Gaussian process regression approach within a data-driven pod framework for engineering problems in fluid dynamics publication-title: Math. Eng. doi: 10.3934/mine.2022021 – year: 2013 ident: 10.1016/j.engappai.2025.110819_bib29 – year: 2010 ident: 10.1016/j.engappai.2025.110819_bib17 article-title: Usage-based life prediction and fleet management for gas turbine engines[C] – year: 2013 ident: 10.1016/j.engappai.2025.110819_bib40 article-title: Gas turbine engine health management: past, present and future trends[C] – volume: 61 start-page: 5498 issue: 12 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib48 article-title: Nonlinear manifold learning and model reduction for transonic flows publication-title: AIAA J. doi: 10.2514/1.J062894 – volume: 63 start-page: 33 year: 2017 ident: 10.1016/j.engappai.2025.110819_bib10 article-title: Numerical investigation of a HPT with different rotor tip configurations in terms of pressure ratio and efficiency publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2016.12.009 – volume: 397 year: 2019 ident: 10.1016/j.engappai.2025.110819_bib45 article-title: Adaptive non-intrusive reduced order modeling for compressible flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.053 – volume: 363 start-page: 195 year: 2019 ident: 10.1016/j.engappai.2025.110819_bib44 article-title: Stacked wasserstein autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.096 – volume: 130 year: 2024 ident: 10.1016/j.engappai.2025.110819_bib23 article-title: Deep learning-based forecasting modeling of micro gas turbine performance projection: an experimental approach publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107769 – volume: 35 issue: 7 year: 2023 ident: 10.1016/j.engappai.2025.110819_bib26 article-title: Flow reconstruction from sparse sensors based on reduced-order autoencoder state estimation publication-title: Phys. Fluids – volume: 28 start-page: 106 issue: 3–4 year: 2014 ident: 10.1016/j.engappai.2025.110819_bib12 article-title: Interpolation-based reduced-order modelling for steady transonic flows via manifold learning publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2014.918695 – volume: 4 start-page: 147 year: 2020 ident: 10.1016/j.engappai.2025.110819_bib21 article-title: An algorithm for choosing best shape parameter for numerical solution of partial differential equation via inverse multiquadric radial basis function publication-title: J. Mass Spectrom. |
| SSID | ssj0003846 |
| Score | 2.437056 |
| Snippet | To facilitate effective assessment of loads (e.g., temperature and stress) and life management of high-pressure turbine (HPT) blades, a wasserstein autoencoder... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110819 |
| SubjectTerms | High-pressure turbine blade Lifetime monitoring Loading calculation Reduced order model Wasserstein autoencoder |
| Title | A novel wasserstein autoencoder-enhanced thermo-mechanical coupled reduced-order model for high pressure turbine blades life monitoring |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.110819 |
| Volume | 152 |
| WOSCitedRecordID | wos001472979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJuoCH3gSllrVQPBpFiraHoEh8cE8CJVKpA0Vy5KX5g3xH_7QzXCwFMZAWRS8CQXCoZZ6Gw-EshLyPS5Eynih9NOjDil_6OZeRD5pBlIgkj3MpdLEJdnKSzmb822Dwy8XCbCpW1-n1NV_8V1ZDHzAbQ2f_gt3bSaED2sB0uALb4fpHjJ94dbNRlfdT6EhKrGbpifWqwYyVUrW-qn-YU39U_S4b_1Jh8K9NFLJeVArjWSRwXPo6L6cplqPdETG3sac9Z_HYARarHHXUvBJSLb1qXioYiyKideuhM_l3SQ-9_om5dkJotbeSrh3SSw_aGfqNMDpt6vOruWg6dwQjL0_XzdW8Z_3Wlt_vHeTP7Lgp_Aa5JbdGjnGM1lMT5mksby76pnN1MibMsR9wUz9mK81NQtw7K4MxUlwcqfocXlTMj_A2OgjCiuzbWbfPcHKcG1REHDJ7QPbGLObpkOxNvhzPvm6X-zA10WDuYXph6LvvtlsD6mk106fksd2O0ImB0TMyUPVz8sRuTagV_EvoctU_XN8LcjOhGmi0BzS6C2j0DtCoBRq9BTSqgUYBaBSBRh3QqAUaNUCjCDTaAe0lmX46nn787NuyHn4RBtHKR8tnLASIgkIVMVfQFqEQo1CxsGSxGPGRkGXAWCoweWOZQBs23mVaAkUchK_IsG5qtU8oUHEpeBqliYoimXIly0IwwYowYmMVHJDYfemssCnvsfJKlTnfxovMcShDDmWGQwfkw5ZuYZK-3EvBHSMzq7oalTQD_N1De_gPtK_Jo-53eUOGq3at3pKHxWY1X7bvLFR_AyJkzGo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+wasserstein+autoencoder-enhanced+thermo-mechanical+coupled+reduced-order+model+for+high+pressure+turbine+blades+life+monitoring&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Rongqiao&rft.au=Chen%2C+Ruoqi&rft.au=Zhao%2C+Yan&rft.au=Shen%2C+Tianbao&rft.date=2025-07-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=152&rft_id=info:doi/10.1016%2Fj.engappai.2025.110819&rft.externalDocID=S095219762500819X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |