Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system

DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first li...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Oncotarget Ročník 9; číslo 27; s. 18832
Hlavní autoři: Buoninfante, Olimpia Alessandra, Pilzecker, Bas, Aslam, Muhammad Assad, Zavrakidis, Ioannis, van der Wiel, Rianne, van de Ven, Marieke, van den Berk, Paul C M, Jacobs, Heinz
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.04.2018
Témata:
ISSN:1949-2553, 1949-2553
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first line defense against alkylating and platinating chemotherapeutics. Effective DDT strongly depends on damage-induced, site-specific PCNA-ubiquitination at Lysine (K) 164 by the E2/E3 complex (RAD6/18). A survey of The Cancer Genome Atlas (TCGA) revealed a high frequency of tumors presents RAD6/RAD18 bi-allelic inactivating deletions. For instance, 11% of renal cell carcinoma and 5% of pancreatic tumors have inactivating -deletions and 7% of malignant peripheral nerve sheath tumors lack . To determine the potential benefit for tumor-specific DDT defects, we followed a genetic approach by establishing unique sets of DDT-proficient and -defective lymphoma and breast cancer cell lines. In the absence of exogenous DNA damage, tumors grew comparably to their controls and . However, DDT-defective lymphomas and breast cancers were compared to their DDT-proficient controls hypersensitive to the chemotherapeutic drug cisplatin (CsPt), both and CsPt strongly inhibited tumor growth and the overall survival of tumor bearing mice greatly improved in the DDT-defective condition. These insights open new therapeutic possibilities for precision cancer medicine with DNA damaging chemotherapeutics and optimize Next-Generation-Sequencing (NGS)-based cancer-diagnostics, -therapeutics, and -prognosis.
AbstractList DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first line defense against alkylating and platinating chemotherapeutics. Effective DDT strongly depends on damage-induced, site-specific PCNA-ubiquitination at Lysine (K) 164 by the E2/E3 complex (RAD6/18). A survey of The Cancer Genome Atlas (TCGA) revealed a high frequency of tumors presents RAD6/RAD18 bi-allelic inactivating deletions. For instance, 11% of renal cell carcinoma and 5% of pancreatic tumors have inactivating -deletions and 7% of malignant peripheral nerve sheath tumors lack . To determine the potential benefit for tumor-specific DDT defects, we followed a genetic approach by establishing unique sets of DDT-proficient and -defective lymphoma and breast cancer cell lines. In the absence of exogenous DNA damage, tumors grew comparably to their controls and . However, DDT-defective lymphomas and breast cancers were compared to their DDT-proficient controls hypersensitive to the chemotherapeutic drug cisplatin (CsPt), both and CsPt strongly inhibited tumor growth and the overall survival of tumor bearing mice greatly improved in the DDT-defective condition. These insights open new therapeutic possibilities for precision cancer medicine with DNA damaging chemotherapeutics and optimize Next-Generation-Sequencing (NGS)-based cancer-diagnostics, -therapeutics, and -prognosis.
DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first line defense against alkylating and platinating chemotherapeutics. Effective DDT strongly depends on damage-induced, site-specific PCNA-ubiquitination at Lysine (K) 164 by the E2/E3 complex (RAD6/18). A survey of The Cancer Genome Atlas (TCGA) revealed a high frequency of tumors presents RAD6/RAD18 bi-allelic inactivating deletions. For instance, 11% of renal cell carcinoma and 5% of pancreatic tumors have inactivating RAD18-deletions and 7% of malignant peripheral nerve sheath tumors lack RAD6B. To determine the potential benefit for tumor-specific DDT defects, we followed a genetic approach by establishing unique sets of DDT-proficient PcnaK164 and -defective PcnaK164R lymphoma and breast cancer cell lines. In the absence of exogenous DNA damage, PcnaK164R tumors grew comparably to their PcnaK164 controls in vitro and in vivo. However, DDT-defective lymphomas and breast cancers were compared to their DDT-proficient controls hypersensitive to the chemotherapeutic drug cisplatin (CsPt), both in vitro and in vivo. CsPt strongly inhibited tumor growth and the overall survival of tumor bearing mice greatly improved in the DDT-defective condition. These insights open new therapeutic possibilities for precision cancer medicine with DNA damaging chemotherapeutics and optimize Next-Generation-Sequencing (NGS)-based cancer-diagnostics, -therapeutics, and -prognosis.DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first line defense against alkylating and platinating chemotherapeutics. Effective DDT strongly depends on damage-induced, site-specific PCNA-ubiquitination at Lysine (K) 164 by the E2/E3 complex (RAD6/18). A survey of The Cancer Genome Atlas (TCGA) revealed a high frequency of tumors presents RAD6/RAD18 bi-allelic inactivating deletions. For instance, 11% of renal cell carcinoma and 5% of pancreatic tumors have inactivating RAD18-deletions and 7% of malignant peripheral nerve sheath tumors lack RAD6B. To determine the potential benefit for tumor-specific DDT defects, we followed a genetic approach by establishing unique sets of DDT-proficient PcnaK164 and -defective PcnaK164R lymphoma and breast cancer cell lines. In the absence of exogenous DNA damage, PcnaK164R tumors grew comparably to their PcnaK164 controls in vitro and in vivo. However, DDT-defective lymphomas and breast cancers were compared to their DDT-proficient controls hypersensitive to the chemotherapeutic drug cisplatin (CsPt), both in vitro and in vivo. CsPt strongly inhibited tumor growth and the overall survival of tumor bearing mice greatly improved in the DDT-defective condition. These insights open new therapeutic possibilities for precision cancer medicine with DNA damaging chemotherapeutics and optimize Next-Generation-Sequencing (NGS)-based cancer-diagnostics, -therapeutics, and -prognosis.
Author van der Wiel, Rianne
Buoninfante, Olimpia Alessandra
van den Berk, Paul C M
Jacobs, Heinz
Zavrakidis, Ioannis
Pilzecker, Bas
Aslam, Muhammad Assad
van de Ven, Marieke
Author_xml – sequence: 1
  givenname: Olimpia Alessandra
  surname: Buoninfante
  fullname: Buoninfante, Olimpia Alessandra
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
– sequence: 2
  givenname: Bas
  surname: Pilzecker
  fullname: Pilzecker, Bas
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
– sequence: 3
  givenname: Muhammad Assad
  surname: Aslam
  fullname: Aslam, Muhammad Assad
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
– sequence: 4
  givenname: Ioannis
  surname: Zavrakidis
  fullname: Zavrakidis, Ioannis
  organization: Division of Psychosocial Research and Epidemiology, Amsterdam, CX 1066, The Netherlands
– sequence: 5
  givenname: Rianne
  surname: van der Wiel
  fullname: van der Wiel, Rianne
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
– sequence: 6
  givenname: Marieke
  surname: van de Ven
  fullname: van de Ven, Marieke
  organization: Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, CX 1066, The Netherlands
– sequence: 7
  givenname: Paul C M
  surname: van den Berk
  fullname: van den Berk, Paul C M
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
– sequence: 8
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
  organization: Division of Tumor Biology and Immunology, Amsterdam, CX 1066, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29721165$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAMgCMEYmPsB3BBOXLpaB5tGm7TeEoTcIBzlabOCGqbkqSH_XuCGBK-2LI-f7J9ho4HNwBCFyRfkapk9NoN2kXldxBXlAshjtCcSC4zWhTs-F89Q8sQPvMUBRcVladoRqWghJTFHDWvHrQN1g1Yq0GDx_EDvBr3N3j0zthohx023vU4Tr3zOIwJN1bjFgzoGLAdfibw7fMat6pXO8DRdcmQXDjsQ4T-HJ0Y1QVYHvICvd_fvW0es-3Lw9Nmvc00I1xkOm9bUJIxKKVRhCkiBSkY1YxRqXhpKikqQqSmJjW4aAivNG8YUTIdVRm6QFe_3rT41wQh1r0NGrpODeCmUNOccSpJJVhCLw_o1PTQ1qO3vfL7-u8v9BsB52jg
CitedBy_id crossref_primary_10_1093_nar_gkac545
crossref_primary_10_1093_pnasnexus_pgae242
crossref_primary_10_1080_14728222_2021_1864321
crossref_primary_10_1002_cam4_2203
crossref_primary_10_1007_s11010_025_05291_2
crossref_primary_10_3389_fphar_2021_596535
crossref_primary_10_1080_10409238_2019_1651817
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1371_journal_pone_0210526
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_3390_genes10010010
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_3389_fonc_2021_822500
crossref_primary_10_1038_s41598_020_65767_7
ContentType Journal Article
DBID NPM
7X8
DOI 10.18632/oncotarget.24777
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
ExternalDocumentID 29721165
Genre Journal Article
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DIK
FRJ
GX1
HYE
KQ8
M48
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c3147-c0ddea933e69fa13a1971532c3329a46f8978119c2f32947b148c4b31a98298f2
IEDL.DBID 7X8
ISSN 1949-2553
IngestDate Fri Jul 11 14:12:27 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 27
Keywords precision cancer medicine
DNA damage tolerance
cancer target
cisplatin
chemotherapy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3147-c0ddea933e69fa13a1971532c3329a46f8978119c2f32947b148c4b31a98298f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=24777&path%5B%5D=77702
PMID 29721165
PQID 2034291873
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2034291873
pubmed_primary_29721165
PublicationCentury 2000
PublicationDate 2018-Apr-10
20180410
PublicationDateYYYYMMDD 2018-04-10
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-Apr-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2018
References 18166979 - Cell Res. 2008 Jan;18(1):148-61
15952890 - Annu Rev Biochem. 2005;74:317-53
16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
16357261 - Science. 2005 Dec 16;310(5755):1821-4
15121847 - Mol Cell Biol. 2004 May;24(10 ):4267-74
17626183 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12117-22
19258535 - Microbiol Mol Biol Rev. 2009 Mar;73(1):134-54
28650484 - Nat Genet. 2017 Aug;49(8):1219-1230
25058905 - Eur J Pharmacol. 2014 Oct 5;740:364-78
16340005 - Nucleic Acids Res. 2005 Dec 09;33(22):e188
28886337 - Mol Cell. 2017 Sep 7;67(5):882-890.e5
28761001 - Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6875-E6883
22588877 - Cancer Discov. 2012 May;2(5):401-4
17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
19847258 - Nature. 2009 Oct 22;461(7267):1071-8
14657656 - Cell Cycle. 2004 Jan;3(1):15-8
15829967 - Nature. 2005 Apr 14;434(7035):917-21
23550210 - Sci Signal. 2013 Apr 02;6(269):pl1
9576943 - Proc Natl Acad Sci U S A. 1998 May 12;95(10 ):5678-83
21701511 - Nat Rev Cancer. 2011 Jun 24;11(7):467-80
10880451 - EMBO J. 2000 Jul 3;19(13):3388-97
15149598 - Mol Cell. 2004 May 21;14 (4):491-500
17875922 - Mol Cell Biol. 2007 Dec;27(23):8401-8
17512402 - Cell. 2007 May 18;129(4):665-79
26926109 - Nucleic Acids Res. 2016 Jun 2;44(10 ):4734-44
12226657 - Nature. 2002 Sep 12;419(6903):135-41
1552940 - Nature. 1992 Mar 19;356(6366):215-21
12968183 - Nature. 2003 Sep 11;425(6954):188-91
References_xml – reference: 26926109 - Nucleic Acids Res. 2016 Jun 2;44(10 ):4734-44
– reference: 23550210 - Sci Signal. 2013 Apr 02;6(269):pl1
– reference: 15121847 - Mol Cell Biol. 2004 May;24(10 ):4267-74
– reference: 17875922 - Mol Cell Biol. 2007 Dec;27(23):8401-8
– reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
– reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4
– reference: 18166979 - Cell Res. 2008 Jan;18(1):148-61
– reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21
– reference: 14657656 - Cell Cycle. 2004 Jan;3(1):15-8
– reference: 10880451 - EMBO J. 2000 Jul 3;19(13):3388-97
– reference: 21701511 - Nat Rev Cancer. 2011 Jun 24;11(7):467-80
– reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
– reference: 19847258 - Nature. 2009 Oct 22;461(7267):1071-8
– reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 22588877 - Cancer Discov. 2012 May;2(5):401-4
– reference: 28886337 - Mol Cell. 2017 Sep 7;67(5):882-890.e5
– reference: 1552940 - Nature. 1992 Mar 19;356(6366):215-21
– reference: 15149598 - Mol Cell. 2004 May 21;14 (4):491-500
– reference: 15952890 - Annu Rev Biochem. 2005;74:317-53
– reference: 16340005 - Nucleic Acids Res. 2005 Dec 09;33(22):e188
– reference: 28761001 - Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6875-E6883
– reference: 19258535 - Microbiol Mol Biol Rev. 2009 Mar;73(1):134-54
– reference: 25058905 - Eur J Pharmacol. 2014 Oct 5;740:364-78
– reference: 17626183 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12117-22
– reference: 9576943 - Proc Natl Acad Sci U S A. 1998 May 12;95(10 ):5678-83
– reference: 17512402 - Cell. 2007 May 18;129(4):665-79
– reference: 28650484 - Nat Genet. 2017 Aug;49(8):1219-1230
SSID ssj0000547829
Score 2.2418337
Snippet DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 18832
Title Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system
URI https://www.ncbi.nlm.nih.gov/pubmed/29721165
https://www.proquest.com/docview/2034291873
Volume 9
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevDiA1_1xQpeV7vZZB9epKjFg4YeFHoLyXYXCprUtBX8985sUj0JgpdAAgthMvtlZmfm-wi5sNI67WLLTGEtixM-ZgWErSyBe-dlIawLPLOPKk31aGSG7YHbrG2rXGJiAOpxZfGMHJJ0AdDJtRI303eGqlFYXW0lNFZJR0Aog16tRvr7jKWHZFVBqAxSdcMgehZtYVNLEV1VSH8Q-q0vo1gp9XuQGX42g63_vuY22WzDTNpv_GKHrLhylxTDulXUoRY_dk2b6avPaxqku7EDmuK8CZ0v3qqa4hQmdhLRsQtNH3RS4gp6l_bpOH8DJKLz6tWhNIejDSX0HnkZ3D_fPrBWY4FZwWPFbA_wLTdCOGl8zkXOjQIQjKwQkclj6TWSYnFjIw8PYlVA-mTjQvDcgGW1j_bJWlmV7pDQBLlslMwTJ2TsuTZeCF9AxuKNgbRIdsn50mQZ-DAWJvLSVYtZ9mO0Ljlo7J5NG7KNLEJ6IS6Toz-sPiYbEM9oLPbw3gnpeNjB7pSs24_5ZFafBeeAazp8-gIrk8To
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+cancer+therapy%3A+profiting+from+tumor+specific+defects+in+the+DNA+damage+tolerance+system&rft.jtitle=Oncotarget&rft.au=Buoninfante%2C+Olimpia+Alessandra&rft.au=Pilzecker%2C+Bas&rft.au=Aslam%2C+Muhammad+Assad&rft.au=Zavrakidis%2C+Ioannis&rft.date=2018-04-10&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=9&rft.issue=27&rft.spage=18832&rft_id=info:doi/10.18632%2Foncotarget.24777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon