Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network

Emotions are the most powerful information source to study the cognition, behaviour, and medical conditions of a person. Accurate identification of emotions helps in the development of affective computing, brain–computer interface, medical diagnosis system, etc. Electroencephalogram (EEG) signals ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters Jg. 56; H. 25; S. 1359 - 1361
Hauptverfasser: Khare, S.K, Nishad, A, Upadhyay, A, Bajaj, V
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 10.12.2020
Schlagworte:
ISSN:0013-5194, 1350-911X, 1350-911X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Emotions are the most powerful information source to study the cognition, behaviour, and medical conditions of a person. Accurate identification of emotions helps in the development of affective computing, brain–computer interface, medical diagnosis system, etc. Electroencephalogram (EEG) signals are one such source to capture and study human emotions. In this Letter, a novel time-order representation based on the S-transform and convolutional neural network (CNN) is proposed for the identification of human emotions. EEG signals are transformed into time-order representation (TOR) based on the S-transform. This TOR is given as an input to CNN to automatically extract and classify the deep features. Emotional states of happiness, fear, sadness, and relax are classified with an accuracy of 94.58%. The superiority of the method is judged by evaluating four performance parameters and comparing it with existing state-of-the-art on the same dataset.
AbstractList Emotions are the most powerful information source to study the cognition, behaviour, and medical conditions of a person. Accurate identification of emotions helps in the development of affective computing, brain–computer interface, medical diagnosis system, etc. Electroencephalogram (EEG) signals are one such source to capture and study human emotions. In this Letter, a novel time-order representation based on the S-transform and convolutional neural network (CNN) is proposed for the identification of human emotions. EEG signals are transformed into time-order representation (TOR) based on the S-transform. This TOR is given as an input to CNN to automatically extract and classify the deep features. Emotional states of happiness, fear, sadness, and relax are classified with an accuracy of 94.58%. The superiority of the method is judged by evaluating four performance parameters and comparing it with existing state-of-the-art on the same dataset.
Author Upadhyay, A
Khare, S.K
Nishad, A
Bajaj, V
Author_xml – sequence: 1
  givenname: S.K
  orcidid: 0000-0001-8365-1092
  surname: Khare
  fullname: Khare, S.K
  organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, MP 482005, India
– sequence: 2
  givenname: A
  surname: Nishad
  fullname: Nishad, A
  organization: BITS Pilani, KK Birla Goa Campus, Goa 403726, India
– sequence: 3
  givenname: A
  surname: Upadhyay
  fullname: Upadhyay, A
  email: abhyragav24@gmail.com
  organization: Institute of Engineering and Technology, Bundelkhand University, Jhansi, UP 284128, India
– sequence: 4
  givenname: V
  orcidid: 0000-0002-6832-0495
  surname: Bajaj
  fullname: Bajaj, V
  organization: PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, MP 482005, India
BookMark eNp9UEFOwzAQtFCRKKU3HuAjB1Ls2GmaI1RpQYrEAZC4Ra6zLobEruyEqg_g3ziEEwJOuxrN7MzOKRoZawChc0pmlPDsCupZTGIyi9mCHKExZQmJMkqfR2hMCGVRQjN-gqbe6w2hnPI54XSMPpa1CJDSUrTaGmwVhsb2q8fK2Qbn-Rp7vTWi9rjz2mxxqxuIrKvAYQc7Bx5MO4g3wkOFw9K-AH6IWieMV9Y1WJgKS2vebd31RFFjA537Gu3eurczdKyCAUy_5wQ9rfLH5W1U3K_vltdFJFkIHIESFCCl1UJkiSQp44kQqcykrKSgUrDwo1IBI2qheDXnKaMpr2JWURHHfM4mKB7uSme9d6BKqYfsIauuS0rKvssS6rLvsuy7DKLLH6Kd041wh7_oyUDf6xoO_3LLvCjim1V4JOmzXQw6DW35ajvXV_67xSe_OJe3
CitedBy_id crossref_primary_10_1109_JSEN_2021_3121293
crossref_primary_10_1016_j_bspc_2024_106074
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_1016_j_bspc_2024_106590
crossref_primary_10_1016_j_bspc_2024_106974
crossref_primary_10_1016_j_cmpb_2023_107865
crossref_primary_10_1109_JSEN_2023_3239507
crossref_primary_10_1016_j_bspc_2023_105821
crossref_primary_10_1016_j_bspc_2024_107369
crossref_primary_10_1109_JSEN_2023_3304891
crossref_primary_10_1016_j_bspc_2023_105223
crossref_primary_10_1002_ima_22913
crossref_primary_10_1016_j_bspc_2024_106929
crossref_primary_10_1016_j_bspc_2023_105933
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1016_j_jksuci_2021_08_021
crossref_primary_10_1049_sil2_12076
crossref_primary_10_1109_ACCESS_2025_3592729
crossref_primary_10_1016_j_bspc_2024_106241
crossref_primary_10_3390_bioengineering10101200
crossref_primary_10_1007_s12652_023_04715_5
crossref_primary_10_1016_j_bspc_2025_108046
crossref_primary_10_1016_j_apacoust_2023_109620
crossref_primary_10_3390_s22218128
crossref_primary_10_1016_j_bspc_2024_106447
crossref_primary_10_1007_s11571_024_10198_7
crossref_primary_10_1016_j_bspc_2024_106446
crossref_primary_10_1016_j_bspc_2024_107018
crossref_primary_10_1016_j_bspc_2024_106624
crossref_primary_10_1016_j_bspc_2024_106344
crossref_primary_10_1016_j_bspc_2024_106489
crossref_primary_10_1016_j_bspc_2025_107555
crossref_primary_10_1016_j_bspc_2023_105926
crossref_primary_10_3390_bdcc6010016
crossref_primary_10_1186_s12859_023_05544_1
crossref_primary_10_3390_app13137908
crossref_primary_10_3390_info15060301
crossref_primary_10_1016_j_compbiomed_2023_107374
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1109_JSEN_2022_3202209
crossref_primary_10_1007_s13755_023_00224_z
crossref_primary_10_3390_s23187860
Cites_doi 10.1109/JSEN.2019.2962874
10.1016/j.procs.2017.05.025
10.1109/78.492555
10.1109/TAFFC.2017.2660485
10.1109/TBME.2010.2048568
10.1109/TASLP.2014.2335056
10.1016/j.dsp.2012.05.007
10.1109/ACCESS.2020.3006082
10.1049/iet-smt.2018.5237
10.1007/s13755-018-0048-y
10.1016/j.cmpb.2019.03.015
10.4236/jbise.2010.34054
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2020.2380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1361
ExternalDocumentID 10_1049_el_2020_2380
ELL2BF07356
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3146-efa1ee71d8a95c07345aa7c9ccdca1ca3519ff5aa0f8f4d6473174d23d1a22463
IEDL.DBID 24P
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604957700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:10:08 EDT 2025
Tue Nov 18 21:06:23 EST 2025
Wed Jan 22 16:31:52 EST 2025
Wed Jan 06 04:41:12 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords electroencephalography
CNN
brain-computer interfaces
affective computing
convolutional neural network
time-order representation
electroencephalogram signals
transforms
brain–computer interface
deep features
emotion recognition
behaviour conditions
medical signal processing
cognition conditions
human emotions
medical conditions
TOR
information source
medical diagnosis system
EEG signals
convolutional neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3146-efa1ee71d8a95c07345aa7c9ccdca1ca3519ff5aa0f8f4d6473174d23d1a22463
ORCID 0000-0002-6832-0495
0000-0001-8365-1092
PageCount 3
ParticipantIDs crossref_primary_10_1049_el_2020_2380
iet_journals_10_1049_el_2020_2380
crossref_citationtrail_10_1049_el_2020_2380
wiley_primary_10_1049_el_2020_2380_ELL2BF07356
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Pooja, Jain; Pachori, Ram Bilas (C15) 2014; 22
Smith, K.; Varun, B. (C12) 2020
Murugappan, N.; Ramachandran, M.; Sazali, Y. (C7) 2010; 334054
Silvia, U.L.; Smith, K.; Varun, B. (C16) 2020; 8
Liu, Y.; Yu, M.; Zhao, G. (C4) 2018; 9
Lin, Y.; Wang, C.; Jung, T. (C6) 2010; 57
Chen, L.; Mao, X.; Xue, Y. (C3) 2012; 22
Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P. (C1) 2020; 20
Varun, B.; Sachin, T.; Abdulkadir, S. (C10) 2018; 6
Zhuang, N.; Zeng, Y.; Tong, L. (C8) 2017; 01
Stockwell, R.G.; Mansinha, L.; Lowe, R.P. (C14) 1996; 44
Sachin, T.; Varun, B. (C11) 2019; 173
Smith, K.; Varun, B.; Sinha, G.R. (C13) 2020
Varun, B.; Annala, K.H.; Sri, A.B. (C9) 2019; 13
2020; 8
2018; 6
2018; 9
2010; 57
2020; 20
2020
7062
2019; 13
2010; 334054
2017; 01
2017
2019; 173
2012; 22
2014; 22
1996; 44
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_15_2
Wang X.‐W. (e_1_2_5_6_2)
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_3_2
e_1_2_5_2_2
Zhuang N. (e_1_2_5_9_2) 2017; 01
Smith K. (e_1_2_5_14_2) 2020
e_1_2_5_18_2
e_1_2_5_17_2
Smith K. (e_1_2_5_13_2) 2020
References_xml – volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  end-page: 1806
  ident: C6
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 1467
  year: 2014
  end-page: 1482
  ident: C15
  article-title: Event-based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix
  publication-title: IEEE/ACM Trans. Audio Speech and Lang. Process.
– year: 2020
  ident: C12
  article-title: Time-frequency representation and convolutional neural network based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 01
  start-page: 1
  year: 2017
  end-page: 9
  ident: C8
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– volume: 20
  start-page: 3996
  issue: 8
  year: 2020
  end-page: 4024
  ident: C1
  article-title: Consumer grade EEG measuring sensors as research tools: a review
  publication-title: IEEE Sens. J.
– volume: 22
  start-page: 1154
  issue: 6
  year: 2012
  end-page: 1160
  ident: C3
  article-title: Speech emotion recognition: features and classification models
  publication-title: Digit. Signal Process.
– volume: 334054
  start-page: 390
  year: 2010
  end-page: 396
  ident: C7
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
– volume: 173
  start-page: 157
  year: 2019
  end-page: 165
  ident: C11
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput. Methods Programs Biomed.
– volume: 6
  start-page: 12
  issue: 1
  year: 2018
  ident: C10
  article-title: Emotion classification using flexible analytic wavelet transform for electroencephalogram signals
  publication-title: Health Inf. Sci. Syst.
– volume: 9
  start-page: 550
  issue: 4
  year: 2018
  end-page: 0562
  ident: C4
  article-title: Real-time movieinduced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 13
  start-page: 375
  issue: 3
  year: 2019
  end-page: 380
  ident: C9
  article-title: Emotion classification using EEG signals based on tunable-Q wavelet transform
  publication-title: IET Sci., Meas. Technol.
– year: 2020
  ident: C13
  article-title: Adaptive tunable Q wavelet transform based emotion identification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 44
  start-page: 998
  year: 1996
  end-page: 1001
  ident: C14
  article-title: Localization of the complex spectrum: the S transform
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 124055
  year: 2020
  end-page: 124065
  ident: C16
  article-title: Hybrid computerized method for environmental sound classification
  publication-title: IEEE Access
– volume: 01
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– volume: 44
  start-page: 998
  year: 1996
  end-page: 1001
  article-title: Localization of the complex spectrum: the S transform
  publication-title: IEEE Trans. Signal Process.
– volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  end-page: 1806
  article-title: EEG‐based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2020
  article-title: Adaptive tunable Q wavelet transform based emotion identification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 1154
  issue: 6
  year: 2012
  end-page: 1160
  article-title: Speech emotion recognition: features and classification models
  publication-title: Digit. Signal Process.
– volume: 22
  start-page: 1467
  year: 2014
  end-page: 1482
  article-title: Event‐based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix
  publication-title: IEEE/ACM Trans. Audio Speech and Lang. Process.
– start-page: 1175
  year: 2017
  end-page: 1184
  article-title: Emotion recognition using facial expressions
– volume: 9
  start-page: 550
  issue: 4
  year: 2018
  end-page: 0562
  article-title: Real‐time movieinduced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 334054
  start-page: 390
  year: 2010
  end-page: 396
  article-title: Classification of human emotion from EEG using discrete wavelet transform
  publication-title: J. Biomed. Sci. Eng.
– volume: 13
  start-page: 375
  issue: 3
  year: 2019
  end-page: 380
  article-title: Emotion classification using EEG signals based on tunable‐Q wavelet transform
  publication-title: IET Sci., Meas. Technol.
– volume: 8
  start-page: 124055
  year: 2020
  end-page: 124065
  article-title: Hybrid computerized method for environmental sound classification
  publication-title: IEEE Access
– volume: 20
  start-page: 3996
  issue: 8
  year: 2020
  end-page: 4024
  article-title: Consumer grade EEG measuring sensors as research tools: a review
  publication-title: IEEE Sens. J.
– volume: 173
  start-page: 157
  year: 2019
  end-page: 165
  article-title: Emotion recognition from single‐channel EEG signals using a two‐stage correlation and instantaneous frequency‐based filtering method
  publication-title: Comput. Methods Programs Biomed.
– year: 2020
  article-title: Time‐frequency representation and convolutional neural network based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 7062
– volume: 6
  start-page: 12
  issue: 1
  year: 2018
  article-title: Emotion classification using flexible analytic wavelet transform for electroencephalogram signals
  publication-title: Health Inf. Sci. Syst.
– ident: e_1_2_5_2_2
  doi: 10.1109/JSEN.2019.2962874
– ident: e_1_2_5_3_2
  doi: 10.1016/j.procs.2017.05.025
– year: 2020
  ident: e_1_2_5_14_2
  article-title: Adaptive tunable Q wavelet transform based emotion identification
  publication-title: IEEE Trans. Instrum. Meas.
– ident: e_1_2_5_15_2
  doi: 10.1109/78.492555
– year: 2020
  ident: e_1_2_5_13_2
  article-title: Time‐frequency representation and convolutional neural network based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: e_1_2_5_18_2
– ident: e_1_2_5_5_2
  doi: 10.1109/TAFFC.2017.2660485
– ident: e_1_2_5_7_2
  doi: 10.1109/TBME.2010.2048568
– ident: e_1_2_5_16_2
  doi: 10.1109/TASLP.2014.2335056
– ident: e_1_2_5_4_2
  doi: 10.1016/j.dsp.2012.05.007
– volume-title: Neural Information Processing
  ident: e_1_2_5_6_2
– volume: 01
  start-page: 1
  year: 2017
  ident: e_1_2_5_9_2
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– ident: e_1_2_5_17_2
  doi: 10.1109/ACCESS.2020.3006082
– ident: e_1_2_5_10_2
  doi: 10.1049/iet-smt.2018.5237
– ident: e_1_2_5_11_2
  doi: 10.1007/s13755-018-0048-y
– ident: e_1_2_5_12_2
  doi: 10.1016/j.cmpb.2019.03.015
– ident: e_1_2_5_8_2
  doi: 10.4236/jbise.2010.34054
SSID ssib014146041
ssj0012997
Score 2.5181952
Snippet Emotions are the most powerful information source to study the cognition, behaviour, and medical conditions of a person. Accurate identification of emotions...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1359
SubjectTerms affective computing
behaviour conditions
brain‐computer interfaces
brain–computer interface
CNN
cognition conditions
convolutional neural nets
convolutional neural network
deep features
EEG signals
electroencephalogram signals
electroencephalography
emotion recognition
human emotions
information source
medical conditions
medical diagnosis system
medical signal processing
Special Issue: Current Trends in Cognitive Science and Brain Computing Research and Applications
time‐order representation
TOR
transforms
Title Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.2380
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.2380
Volume 56
WOSCitedRecordID wos000604957700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PejBb3F-EUFPUlzaZG2PKp0KYwxU3K2k-ZDB6GSrnr1682_0L_G9tBvzMEG8tCUkJeTlfST55fcIOfUzZY31Mw-WyMYDD8E8iEKEx02GiCEtmXYkru2w04l6vbhbbbjhXZiSH2K64Yaa4ew1KrjMyiwkENSiEPHgwEckcwRL9iXG4I3Mzrw7PUUAU-uSqwSigUrdq4Dv0P5itvUPl7TYN8XPQNV5mtb6f_u4QdaqGJNelpNikyyYfIuszjAPbpMPlwwTYUJOMnRoqSkT-owp3jihSXJDEdsBs5MiNv6ZYhb6r_dPx9VJHRfm5N5STtEXagofEE7Se6hVTOJhKnNNEdpeTXHoF1JoupcDoO-Qx1bycH3rVVkZPBWAWfWMlcyYkOlIxkKBheBCylDFSmklmZKY8c9aKGvYyHLd5CGEKFz7gWYS2euCXVLLh7nZI9RqsDBK-SLKDJdCx6oplOImzvw44szWyflEMKmqKMsxc8YgdUfnPE7NIMUBTnGA6-RsWvulpOqYU-8EZJxWujqeU6eU668_SpN2279qwRCI5v5fGxyQFSxHZAxrHJJaMXo1R2RZvRX98ejYzWN4Pt11vgGmR_eo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86BfXgtzg_I-hJimubru1RZXPDWgQn7lbSfMhgdLJVz169-Tf6l_he2o15mCCeWspLCXnJy0vyy-9HyKmTCq20k1qwRFYWzBC2BVmIZzGVImJIclsaEtfIj-Og2w3vS51TvAtT8ENMNtxwZJh4jQMcN6SLBSdDkkyFJwcOQpkDWLMvMMg1ULvhqR1PjhEg1hp1Fder4ajulsh3KH8xXfrHnDTfU_nPTNVMNc21f1dynayWWSa9LLrFBplT2SZZmeIe3CIfRg4TgULGN3SgqSokfUYU75zQRuOGIroD-idFdPwzRR36r_dPw9ZJDRvm-OZSRnE2lBReIKGkD2CVjzNiyjNJEdxednKoF5JomoeBoG-Tx2ajc92ySl0GS7gQWC2lua2Ub8uAh56AGME8zn0RCiEFtwVHzT-t4VtNB5rJOvMhSWHScaXNkb_O3SGVbJCpXUK1hBgjhOMFqWLck6Goe0IwFaZOGDBbV8n52DOJKEnLUTujn5jDcxYmqp9gAyfYwFVyNrF-Kcg6ZtidgJOTcrSOZtgUjv31R0kjipyrJjSBV9_7a4FjstTq3EVJ1I5v98ky2iBOxq4dkEo-fFWHZFG85b3R8Mh06m8qmPrx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB60iujBXazrCHqSYCeZaZKjS6tiKQUVeguTWaRQ0tJWz169-Rv9Jb43SUs9VBBPCeFNCPPWyXzzPUJO_VRZY_3UgyWy8SBDMA-qEOFxkyJiSEumHYlrI2w2o3Y7bhV9TvEsTM4PMfnhhp7h4jU6uOlrmy84OZJkGtw58BHKHMGafYGLkKFZ-7w12UaAWOu6qwSigl7dLpDvMP5ievSPnDTfMaOflapLNfW1f3_kOlktqkx6mZvFBpkz2SZZmeIe3CIfrh0mAoWcbmjPUpO39BlSPHNCa7VbiugOsE-K6PgXin3ov94_HVsndWyY45NLGcVsqCncQEFJH0FqNK6Iqcw0RXB7YeTwXUii6S4Ogr5Nnuu1p-s7r-jL4KkAAqtnrGTGhExHMhYKYgQXUoYqVkoryZTEnn_WwrOKjSzXVR5CkcK1H2gmkb8u2CGlrJeZXUKthhijlC-i1HApdKyqQilu4tSPI85smZyPNZOogrQce2d0E7d5zuPEdBOc4AQnuEzOJtL9nKxjhtwJKDkpvHU4QyZX7K8vSmqNhn9VhykQ1b2_DjgmS62betK4bz7sk2UUQZgMqxyQ0mjwag7JonobdYaDI2fT3z_e-gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+emotions+from+EEG+signals+using+time%E2%80%90order+representation+based+on+the+S%E2%80%90transform+and+convolutional+neural+network&rft.jtitle=Electronics+letters&rft.au=Khare%2C+S.K.&rft.au=Nishad%2C+A.&rft.au=Upadhyay%2C+A.&rft.au=Bajaj%2C+V.&rft.date=2020-12-10&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=25&rft.spage=1359&rft.epage=1361&rft_id=info:doi/10.1049%2Fel.2020.2380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2020_2380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon