Convolutional deep denoising autoencoders for radio astronomical images
ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is...
Uložené v:
| Vydané v: | Monthly notices of the Royal Astronomical Society Ročník 509; číslo 1; s. 990 - 1009 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford University Press
01.01.2022
|
| Predmet: | |
| ISSN: | 0035-8711, 1365-2966 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations. |
|---|---|
| AbstractList | We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations. ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations. |
| Author | Vazza, F Gheller, C |
| Author_xml | – sequence: 1 givenname: C surname: Gheller fullname: Gheller, C email: claudio.gheller@gmail.com – sequence: 2 givenname: F orcidid: 0000-0002-2821-7928 surname: Vazza fullname: Vazza, F |
| BookMark | eNqFkDFPwzAQhS1UJNrCypyVIe05TpxkRBW0SJVYYI7O9qUySu3KdpH496QUFiTE8m553-npm7GJ844Yu-Ww4NCK5d4FjMuYUAkoyws25UJWedFKOWFTAFHlTc35FZvF-AYApSjklK1X3r374ZisdzhkhugwhvM2WrfL8Jg8Oe0NhZj1PmQBjfUZxhS883urR8TucUfxml32OES6-b5z9vr48LLa5Nvn9dPqfptrwUXK-75RAFzWqi0bRENGkAQjS6N0rVtd1bVCLIxBSZy0kk0lSWKjGq6hqLSYs_L8VwcfY6C-0zbhaX0KaIeOQ3eS0X3J6H5kjNjiF3YI4_Dw8Tdwdwb88fBf9xPKynf2 |
| CitedBy_id | crossref_primary_10_3847_1538_3881_ada28d crossref_primary_10_1093_rasti_rzaf025 crossref_primary_10_3847_2041_8213_ac8f4b crossref_primary_10_1051_0004_6361_202243753 crossref_primary_10_1088_1538_3873_adb334 crossref_primary_10_3847_1538_4365_ad6f0a crossref_primary_10_1093_mnras_stad1272 crossref_primary_10_1063_5_0210858 crossref_primary_10_1109_TAP_2023_3331511 crossref_primary_10_1093_mnras_staf1174 crossref_primary_10_1051_0004_6361_202347948 crossref_primary_10_1109_JSEN_2025_3562705 crossref_primary_10_1093_mnras_staf1082 crossref_primary_10_3847_1538_4357_accae5 crossref_primary_10_1016_j_newar_2023_101685 crossref_primary_10_3847_1538_4357_ad02f4 crossref_primary_10_1051_0004_6361_202553785 crossref_primary_10_1093_mnras_stac2672 crossref_primary_10_1109_ACCESS_2025_3550949 crossref_primary_10_1515_astro_2024_0010 crossref_primary_10_1088_1674_4527_adf716 crossref_primary_10_3847_2515_5172_ac9140 crossref_primary_10_1088_2632_2153_ac7f1a crossref_primary_10_3847_1538_4357_acaa9a |
| Cites_doi | 10.1051/0004-6361/202140526 10.1093/mnras/stx1538 10.1111/j.1365-2966.2006.11111.x 10.1017/pasa.2021.45 10.1051/0004-6361/201116434 10.1051/0004-6361/202038500 10.1093/mnras/staa1032 10.1051/0004-6361/201526228 10.1051/0004-6361/201936560 10.1051/0004-6361/201936278 10.1093/mnras/stu202 10.1051/0004-6361/201424602 10.1051/0004-6361/201833559 10.1051/0004-6361/201220873 10.1038/nature16058 10.1111/j.1365-2966.2012.20768.x 10.3847/1538-4357/abddbb 10.1093/mnras/stx1547 10.1086/113605 10.1093/mnras/stab1301 10.1073/pnas.2022038118 10.1093/mnras/stab1552 10.1093/mnras/sty2102 10.1093/mnrasl/slaa142 10.1093/mnras/staa3532 10.1109/5.726791 10.1051/0004-6361/201016082 10.1051/0004-6361/202039590 10.1088/0067-0049/211/2/19 10.1051/0004-6361/202140369 10.1098/rsta.1933.0009 10.1051/0004-6361/201117104 10.1093/mnras/stx424 10.1016/j.neunet.2020.07.025 10.1126/science.aat7500 10.1051/0004-6361/201323094 10.1146/annurev.astro.43.112904.104850 10.1017/pasa.2021.32 10.1051/0004-6361/201935439 10.1007/0-306-48080-8_7 10.1086/306949 10.3847/1538-4357/abe384 10.1093/mnras/stu1368 10.1007/s12036-011-9114-4 10.3847/1538-4357/abcb8f 10.3847/2041-8213/ac116f 10.3847/1538-3881/ac1426 10.1088/1748-0221/10/08/C08013 10.1051/0004-6361/201731474 10.1086/320548 10.1093/mnras/stv079 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
| Copyright_xml | – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1093/mnras/stab3044 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 1009 |
| ExternalDocumentID | 10_1093_mnras_stab3044 10.1093/mnras/stab3044 |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABVLG AHGBF CITATION ROX |
| ID | FETCH-LOGICAL-c313t-ff8b00167b948aaded3e60d64dbc7c9c577baa2dda6e1ecb6856e6a8b81c025c3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741326000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-8711 |
| IngestDate | Sat Nov 29 02:38:28 EST 2025 Tue Nov 18 21:32:13 EST 2025 Wed Apr 02 07:01:02 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | methods: numerical intergalactic medium large-scale structure of Universe |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-ff8b00167b948aaded3e60d64dbc7c9c577baa2dda6e1ecb6856e6a8b81c025c3 |
| ORCID | 0000-0002-2821-7928 |
| OpenAccessLink | https://academic.oup.com/mnras/article-pdf/509/1/990/41128637/stab3044.pdf |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1093_mnras_stab3044 crossref_primary_10_1093_mnras_stab3044 oup_primary_10_1093_mnras_stab3044 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Locatelli (2021111107515763400_bib40) 2021 Wieringa (2021111107515763400_bib72) 2020 Krizhevsky (2021111107515763400_bib37) 2012 Vazza (2021111107515763400_bib69) 2021; 500 He (2021111107515763400_bib30) 2016 Vernstrom (2021111107515763400_bib71) 2021; 505 Högbom (2021111107515763400_bib34) 1974; 15 Hancock (2021111107515763400_bib29) 2012; 422 Greisen (2021111107515763400_bib28) 2003 McMullin (2021111107515763400_bib42) 2007 Smirnov (2021111107515763400_bib58) 2011; 527 Gheller (2021111107515763400_bib22) 2020; 494 Gheller (2021111107515763400_bib23) 2018; 480 Tian (2021111107515763400_bib63) 2020; 131 Davé (2021111107515763400_bib16) 2001; 552 Lecun (2021111107515763400_bib38) 1998; 86 Bonafede (2021111107515763400_bib2) 2021; 907 Taylor (2021111107515763400_bib62) 1999 Sánchez-Sáez (2021111107515763400_bib52) 2021 Clark (2021111107515763400_bib11) 1980; 89 Chollet (2021111107515763400_bib10) 2015 Shimwell (2021111107515763400_bib56) 2019; 622 Hoeft (2021111107515763400_bib33) 2007; 375 Ronneberger (2021111107515763400_bib50) 2015 Szegedy (2021111107515763400_bib60) 2015 Cornwell (2021111107515763400_bib12) 1999 Girshick (2021111107515763400_bib25) 2014 Rau (2021111107515763400_bib48) 2011; 532 Mostert (2021111107515763400_bib43) 2021; 645 Fremling (2021111107515763400_bib19) 2021 van Haarlem (2021111107515763400_bib65) 2013; 556 Neyman (2021111107515763400_bib44) 1933; 231 Abadi (2021111107515763400_bib1) 2015 Hodgson (2021111107515763400_bib31) 2021; 909 van Diepen (2021111107515763400_bib64) 2018 Brown (2021111107515763400_bib5) 2011; 32 Li (2021111107515763400_bib39) 2021; 118 Vazza (2021111107515763400_bib67) 2015; 580 Vazza (2021111107515763400_bib68) 2019; 627 Schwab (2021111107515763400_bib54) 1984; 89 Gendron-Marsolais (2021111107515763400_bib21) 2021; 911 Simonyan (2021111107515763400_bib57) 2014 Bryan (2021111107515763400_bib6) 2014; 211 Serra (2021111107515763400_bib55) 2015; 448 Carrillo (2021111107515763400_bib7) 2014; 439 Bretonnière (2021111107515763400_bib4) 2021 Duchesne (2021111107515763400_bib17) 2021 Hodgson (2021111107515763400_bib32) 2021 Mandal (2021111107515763400_bib41) 2020; 634 Curtis (2021111107515763400_bib14) 2021 Offringa (2021111107515763400_bib46) 2014; 444 Girard (2021111107515763400_bib24) 2015; 10 Reiprich (2021111107515763400_bib49) 2021; 647 Smirnov (2021111107515763400_bib59) 2011; 527 Godfrey (2021111107515763400_bib26) 2017; 471 Cavanagh (2021111107515763400_bib8) 2021 Sault (2021111107515763400_bib53) 1995 Eckert (2021111107515763400_bib18) 2015; 528 Roscani (2021111107515763400_bib51) 2020; 643 Govoni (2021111107515763400_bib27) 2019; 364 Cen (2021111107515763400_bib9) 1999; 514 Offringa (2021111107515763400_bib45) 2017; 471 Puetter (2021111107515763400_bib47) 2005; 43 Junklewitz (2021111107515763400_bib35) 2016; 586 Kim (2021111107515763400_bib36) 2021 Cornwell (2021111107515763400_bib13) 1985; 143 Vazza (2021111107515763400_bib66) 2015 Tasse (2021111107515763400_bib61) 2018; 611 Botteon (2021111107515763400_bib3) 2020; 499 Dabbech (2021111107515763400_bib15) 2015; 576 Vernstrom (2021111107515763400_bib70) 2017; 467 |
| References_xml | – start-page: A80 volume-title: A&A year: 2021 ident: 2021111107515763400_bib40 doi: 10.1051/0004-6361/202140526 – volume: 471 start-page: 891 year: 2017 ident: 2021111107515763400_bib26 publication-title: MNRAS doi: 10.1093/mnras/stx1538 – year: 2015 ident: 2021111107515763400_bib50 publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 – volume: 375 start-page: 77 year: 2007 ident: 2021111107515763400_bib33 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11111.x – start-page: e503 volume-title: PASA year: 2021 ident: 2021111107515763400_bib17 doi: 10.1017/pasa.2021.45 – volume: 527 start-page: A107 year: 2011 ident: 2021111107515763400_bib59 publication-title: A&A doi: 10.1051/0004-6361/201116434 – volume: 645 start-page: A89 year: 2021 ident: 2021111107515763400_bib43 publication-title: A&A doi: 10.1051/0004-6361/202038500 – volume: 494 start-page: 5603 year: 2020 ident: 2021111107515763400_bib22 publication-title: MNRAS doi: 10.1093/mnras/staa1032 – start-page: 580 volume-title: IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: 2021111107515763400_bib25 – volume-title: Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 2021111107515763400_bib60 – volume: 580 start-page: A119 year: 2015 ident: 2021111107515763400_bib67 publication-title: A&A doi: 10.1051/0004-6361/201526228 – volume: 634 start-page: A4 year: 2020 ident: 2021111107515763400_bib41 publication-title: A&A doi: 10.1051/0004-6361/201936560 – volume: 643 start-page: A43 year: 2020 ident: 2021111107515763400_bib51 publication-title: A&A doi: 10.1051/0004-6361/201936278 – start-page: 770 volume-title: IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 2021111107515763400_bib30 – volume: 439 start-page: 3591 year: 2014 ident: 2021111107515763400_bib7 publication-title: MNRAS doi: 10.1093/mnras/stu202 – volume: 576 start-page: A7 year: 2015 ident: 2021111107515763400_bib15 publication-title: A&A doi: 10.1051/0004-6361/201424602 – volume: 622 start-page: A1 year: 2019 ident: 2021111107515763400_bib56 publication-title: A&A doi: 10.1051/0004-6361/201833559 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems 25 year: 2012 ident: 2021111107515763400_bib37 – year: 2018 ident: 2021111107515763400_bib64 – start-page: 64 volume-title: The Many Facets of Extragalactic Radio Surveys: Towards New Scientific Challenges year: 2015 ident: 2021111107515763400_bib66 – volume-title: ASP Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II year: 1999 ident: 2021111107515763400_bib62 – volume: 556 start-page: A2 year: 2013 ident: 2021111107515763400_bib65 publication-title: A&A doi: 10.1051/0004-6361/201220873 – volume: 15 start-page: 417 year: 1974 ident: 2021111107515763400_bib34 publication-title: A&AS – volume: 528 start-page: 105 year: 2015 ident: 2021111107515763400_bib18 publication-title: Nature doi: 10.1038/nature16058 – volume: 422 start-page: 1812 year: 2012 ident: 2021111107515763400_bib29 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20768.x – volume: 911 start-page: 56 year: 2021 ident: 2021111107515763400_bib21 publication-title: ApJ doi: 10.3847/1538-4357/abddbb – year: 2021 ident: 2021111107515763400_bib14 – volume: 471 start-page: 301 year: 2017 ident: 2021111107515763400_bib45 publication-title: MNRAS doi: 10.1093/mnras/stx1547 – volume: 89 start-page: 1076 year: 1984 ident: 2021111107515763400_bib54 publication-title: AJ doi: 10.1086/113605 – volume: 505 start-page: 4178 year: 2021 ident: 2021111107515763400_bib71 publication-title: MNRAS doi: 10.1093/mnras/stab1301 – volume: 118 start-page: 2022038118 year: 2021 ident: 2021111107515763400_bib39 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2022038118 – start-page: 659 volume-title: MNRAS year: 2021 ident: 2021111107515763400_bib8 doi: 10.1093/mnras/stab1552 – year: 2014 ident: 2021111107515763400_bib57 – volume: 480 start-page: 3749 year: 2018 ident: 2021111107515763400_bib23 publication-title: MNRAS doi: 10.1093/mnras/sty2102 – volume: 499 start-page: L11 year: 2020 ident: 2021111107515763400_bib3 publication-title: MNRAS doi: 10.1093/mnrasl/slaa142 – year: 2021 ident: 2021111107515763400_bib4 – volume: 143 start-page: 77 year: 1985 ident: 2021111107515763400_bib13 publication-title: A&A – volume: 500 start-page: 5350 year: 2021 ident: 2021111107515763400_bib69 publication-title: MNRAS doi: 10.1093/mnras/staa3532 – volume: 86 start-page: 2278 year: 1998 ident: 2021111107515763400_bib38 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 527 start-page: A106 year: 2011 ident: 2021111107515763400_bib58 publication-title: A&A doi: 10.1051/0004-6361/201016082 – volume: 647 start-page: A2 year: 2021 ident: 2021111107515763400_bib49 publication-title: A&A doi: 10.1051/0004-6361/202039590 – start-page: 151 volume-title: ASP Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II year: 1999 ident: 2021111107515763400_bib12 – volume: 211 start-page: 19 year: 2014 ident: 2021111107515763400_bib6 publication-title: ApJS doi: 10.1088/0067-0049/211/2/19 – start-page: A22 volume-title: A&A year: 2021 ident: 2021111107515763400_bib36 doi: 10.1051/0004-6361/202140369 – volume: 231 start-page: 289 year: 1933 ident: 2021111107515763400_bib44 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.1933.0009 – volume: 532 start-page: A71 year: 2011 ident: 2021111107515763400_bib48 publication-title: A&A doi: 10.1051/0004-6361/201117104 – volume: 467 start-page: 4914 year: 2017 ident: 2021111107515763400_bib70 publication-title: MNRAS doi: 10.1093/mnras/stx424 – start-page: 591 volume-title: ASP Conf. Ser. Vol. 527, Astronomical Data Analysis Software and Systems XXIX year: 2020 ident: 2021111107515763400_bib72 – volume: 131 start-page: 251 year: 2020 ident: 2021111107515763400_bib63 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.025 – volume: 364 start-page: 981 year: 2019 ident: 2021111107515763400_bib27 publication-title: Science doi: 10.1126/science.aat7500 – year: 2015 ident: 2021111107515763400_bib10 publication-title: Keras – volume: 586 start-page: A76 year: 2016 ident: 2021111107515763400_bib35 publication-title: A&A doi: 10.1051/0004-6361/201323094 – volume: 43 start-page: 139 year: 2005 ident: 2021111107515763400_bib47 publication-title: ARA&A doi: 10.1146/annurev.astro.43.112904.104850 – start-page: e047 volume-title: PASA year: 2021 ident: 2021111107515763400_bib32 doi: 10.1017/pasa.2021.32 – volume: 627 start-page: A5 year: 2019 ident: 2021111107515763400_bib68 publication-title: A&A doi: 10.1051/0004-6361/201935439 – year: 2015 ident: 2021111107515763400_bib1 publication-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – volume: 89 start-page: 377 year: 1980 ident: 2021111107515763400_bib11 publication-title: A&A – start-page: 127 volume-title: ASP Conf. Ser. Vol. 376, Astronomical Data Analysis Software and Systems XVI year: 2007 ident: 2021111107515763400_bib42 – start-page: 109 volume-title: AIPS, the VLA, and the VLBA year: 2003 ident: 2021111107515763400_bib28 doi: 10.1007/0-306-48080-8_7 – volume: 514 start-page: 1 year: 1999 ident: 2021111107515763400_bib9 publication-title: ApJ doi: 10.1086/306949 – volume: 909 start-page: 198 year: 2021 ident: 2021111107515763400_bib31 publication-title: ApJ doi: 10.3847/1538-4357/abe384 – volume: 444 start-page: 606 year: 2014 ident: 2021111107515763400_bib46 publication-title: MNRAS doi: 10.1093/mnras/stu1368 – volume: 32 start-page: 577 year: 2011 ident: 2021111107515763400_bib5 publication-title: JA&A doi: 10.1007/s12036-011-9114-4 – volume: 907 start-page: 32 year: 2021 ident: 2021111107515763400_bib2 publication-title: ApJ doi: 10.3847/1538-4357/abcb8f – start-page: L2 volume-title: ApJL year: 2021 ident: 2021111107515763400_bib19 doi: 10.3847/2041-8213/ac116f – start-page: 206 volume-title: AJ year: 2021 ident: 2021111107515763400_bib52 doi: 10.3847/1538-3881/ac1426 – start-page: 433 volume-title: ASP Conf. Ser. Vol. 77, Astronomical Data Analysis Software and Systems IV year: 1995 ident: 2021111107515763400_bib53 – volume: 10 start-page: C08013 year: 2015 ident: 2021111107515763400_bib24 publication-title: J. Instrum. doi: 10.1088/1748-0221/10/08/C08013 – volume: 611 start-page: A87 year: 2018 ident: 2021111107515763400_bib61 publication-title: A&A doi: 10.1051/0004-6361/201731474 – volume: 552 start-page: 473 year: 2001 ident: 2021111107515763400_bib16 publication-title: ApJ doi: 10.1086/320548 – volume: 448 start-page: 1922 year: 2015 ident: 2021111107515763400_bib55 publication-title: MNRAS doi: 10.1093/mnras/stv079 |
| SSID | ssj0004326 |
| Score | 2.5874226 |
| Snippet | ABSTRACT
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes,... We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the... |
| SourceID | crossref oup |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 990 |
| Title | Convolutional deep denoising autoencoders for radio astronomical images |
| Volume | 509 |
| WOSCitedRecordID | wos000741326000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kePDioyqtLxYRPYU22c0mOZZi9WL1UKG3sK9IoE1Kkhb8985u0vpAUS8hIZPdMDNkv5nNfIPQVQI-In0qHOIlzKGukA5XnDhJIiHgoh5VTNlmE8F4HE6n0VNDFl1-s4Ufkd48K3jZA6wkIPQ2zJ-uHxqPnjxO3ysgiW2sZgkYIQRwN_SMXx__tPyYkrYPq8lo7x_vsY92G8iIB7WND9CWztqoMyhNEjufv-JrbM_rHEXZRt0HAMJ5YfPlcHM4SwGV2qtDdDfMs1XjbTCm0noBhyxPTcoA82WVG2JL83MzBjSLC67SHPNmKmNPDIO96PIIPY9uJ8N7p-ml4Ejikgp0HwpbciAiGnKutCKa9RWjSshARtIPAsG5pxRn2tVSsNBnmvFQhK4EWCTJMWpleaY7CBOV0CCS1HwOaJKoSEDUBlEcE_1Q-knURc5axbFsiMZNv4tZXG94k9hqMl5rsotuNvKLmmLjR8lLsNgvQid_ETpFO56pY7C5lDPUqoqlPkfbclWlZXFhfesN6MLSIQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+deep+denoising+autoencoders+for+radio+astronomical+images&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gheller%2C+C&rft.au=Vazza%2C+F&rft.date=2022-01-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=509&rft.issue=1&rft.spage=990&rft.epage=1009&rft_id=info:doi/10.1093%2Fmnras%2Fstab3044&rft.externalDocID=10.1093%2Fmnras%2Fstab3044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |