Convolutional deep denoising autoencoders for radio astronomical images

ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Monthly notices of the Royal Astronomical Society Ročník 509; číslo 1; s. 990 - 1009
Hlavní autori: Gheller, C, Vazza, F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford University Press 01.01.2022
Predmet:
ISSN:0035-8711, 1365-2966
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
AbstractList We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
Author Vazza, F
Gheller, C
Author_xml – sequence: 1
  givenname: C
  surname: Gheller
  fullname: Gheller, C
  email: claudio.gheller@gmail.com
– sequence: 2
  givenname: F
  orcidid: 0000-0002-2821-7928
  surname: Vazza
  fullname: Vazza, F
BookMark eNqFkDFPwzAQhS1UJNrCypyVIe05TpxkRBW0SJVYYI7O9qUySu3KdpH496QUFiTE8m553-npm7GJ844Yu-Ww4NCK5d4FjMuYUAkoyws25UJWedFKOWFTAFHlTc35FZvF-AYApSjklK1X3r374ZisdzhkhugwhvM2WrfL8Jg8Oe0NhZj1PmQBjfUZxhS883urR8TucUfxml32OES6-b5z9vr48LLa5Nvn9dPqfptrwUXK-75RAFzWqi0bRENGkAQjS6N0rVtd1bVCLIxBSZy0kk0lSWKjGq6hqLSYs_L8VwcfY6C-0zbhaX0KaIeOQ3eS0X3J6H5kjNjiF3YI4_Dw8Tdwdwb88fBf9xPKynf2
CitedBy_id crossref_primary_10_3847_1538_3881_ada28d
crossref_primary_10_1093_rasti_rzaf025
crossref_primary_10_3847_2041_8213_ac8f4b
crossref_primary_10_1051_0004_6361_202243753
crossref_primary_10_1088_1538_3873_adb334
crossref_primary_10_3847_1538_4365_ad6f0a
crossref_primary_10_1093_mnras_stad1272
crossref_primary_10_1063_5_0210858
crossref_primary_10_1109_TAP_2023_3331511
crossref_primary_10_1093_mnras_staf1174
crossref_primary_10_1051_0004_6361_202347948
crossref_primary_10_1109_JSEN_2025_3562705
crossref_primary_10_1093_mnras_staf1082
crossref_primary_10_3847_1538_4357_accae5
crossref_primary_10_1016_j_newar_2023_101685
crossref_primary_10_3847_1538_4357_ad02f4
crossref_primary_10_1051_0004_6361_202553785
crossref_primary_10_1093_mnras_stac2672
crossref_primary_10_1109_ACCESS_2025_3550949
crossref_primary_10_1515_astro_2024_0010
crossref_primary_10_1088_1674_4527_adf716
crossref_primary_10_3847_2515_5172_ac9140
crossref_primary_10_1088_2632_2153_ac7f1a
crossref_primary_10_3847_1538_4357_acaa9a
Cites_doi 10.1051/0004-6361/202140526
10.1093/mnras/stx1538
10.1111/j.1365-2966.2006.11111.x
10.1017/pasa.2021.45
10.1051/0004-6361/201116434
10.1051/0004-6361/202038500
10.1093/mnras/staa1032
10.1051/0004-6361/201526228
10.1051/0004-6361/201936560
10.1051/0004-6361/201936278
10.1093/mnras/stu202
10.1051/0004-6361/201424602
10.1051/0004-6361/201833559
10.1051/0004-6361/201220873
10.1038/nature16058
10.1111/j.1365-2966.2012.20768.x
10.3847/1538-4357/abddbb
10.1093/mnras/stx1547
10.1086/113605
10.1093/mnras/stab1301
10.1073/pnas.2022038118
10.1093/mnras/stab1552
10.1093/mnras/sty2102
10.1093/mnrasl/slaa142
10.1093/mnras/staa3532
10.1109/5.726791
10.1051/0004-6361/201016082
10.1051/0004-6361/202039590
10.1088/0067-0049/211/2/19
10.1051/0004-6361/202140369
10.1098/rsta.1933.0009
10.1051/0004-6361/201117104
10.1093/mnras/stx424
10.1016/j.neunet.2020.07.025
10.1126/science.aat7500
10.1051/0004-6361/201323094
10.1146/annurev.astro.43.112904.104850
10.1017/pasa.2021.32
10.1051/0004-6361/201935439
10.1007/0-306-48080-8_7
10.1086/306949
10.3847/1538-4357/abe384
10.1093/mnras/stu1368
10.1007/s12036-011-9114-4
10.3847/1538-4357/abcb8f
10.3847/2041-8213/ac116f
10.3847/1538-3881/ac1426
10.1088/1748-0221/10/08/C08013
10.1051/0004-6361/201731474
10.1086/320548
10.1093/mnras/stv079
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
DBID AAYXX
CITATION
DOI 10.1093/mnras/stab3044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1009
ExternalDocumentID 10_1093_mnras_stab3044
10.1093/mnras/stab3044
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
ROX
ID FETCH-LOGICAL-c313t-ff8b00167b948aaded3e60d64dbc7c9c577baa2dda6e1ecb6856e6a8b81c025c3
IEDL.DBID TOX
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741326000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Sat Nov 29 02:38:28 EST 2025
Tue Nov 18 21:32:13 EST 2025
Wed Apr 02 07:01:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: numerical
intergalactic medium
large-scale structure of Universe
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ff8b00167b948aaded3e60d64dbc7c9c577baa2dda6e1ecb6856e6a8b81c025c3
ORCID 0000-0002-2821-7928
OpenAccessLink https://academic.oup.com/mnras/article-pdf/509/1/990/41128637/stab3044.pdf
PageCount 20
ParticipantIDs crossref_citationtrail_10_1093_mnras_stab3044
crossref_primary_10_1093_mnras_stab3044
oup_primary_10_1093_mnras_stab3044
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Locatelli (2021111107515763400_bib40) 2021
Wieringa (2021111107515763400_bib72) 2020
Krizhevsky (2021111107515763400_bib37) 2012
Vazza (2021111107515763400_bib69) 2021; 500
He (2021111107515763400_bib30) 2016
Vernstrom (2021111107515763400_bib71) 2021; 505
Högbom (2021111107515763400_bib34) 1974; 15
Hancock (2021111107515763400_bib29) 2012; 422
Greisen (2021111107515763400_bib28) 2003
McMullin (2021111107515763400_bib42) 2007
Smirnov (2021111107515763400_bib58) 2011; 527
Gheller (2021111107515763400_bib22) 2020; 494
Gheller (2021111107515763400_bib23) 2018; 480
Tian (2021111107515763400_bib63) 2020; 131
Davé (2021111107515763400_bib16) 2001; 552
Lecun (2021111107515763400_bib38) 1998; 86
Bonafede (2021111107515763400_bib2) 2021; 907
Taylor (2021111107515763400_bib62) 1999
Sánchez-Sáez (2021111107515763400_bib52) 2021
Clark (2021111107515763400_bib11) 1980; 89
Chollet (2021111107515763400_bib10) 2015
Shimwell (2021111107515763400_bib56) 2019; 622
Hoeft (2021111107515763400_bib33) 2007; 375
Ronneberger (2021111107515763400_bib50) 2015
Szegedy (2021111107515763400_bib60) 2015
Cornwell (2021111107515763400_bib12) 1999
Girshick (2021111107515763400_bib25) 2014
Rau (2021111107515763400_bib48) 2011; 532
Mostert (2021111107515763400_bib43) 2021; 645
Fremling (2021111107515763400_bib19) 2021
van Haarlem (2021111107515763400_bib65) 2013; 556
Neyman (2021111107515763400_bib44) 1933; 231
Abadi (2021111107515763400_bib1) 2015
Hodgson (2021111107515763400_bib31) 2021; 909
van Diepen (2021111107515763400_bib64) 2018
Brown (2021111107515763400_bib5) 2011; 32
Li (2021111107515763400_bib39) 2021; 118
Vazza (2021111107515763400_bib67) 2015; 580
Vazza (2021111107515763400_bib68) 2019; 627
Schwab (2021111107515763400_bib54) 1984; 89
Gendron-Marsolais (2021111107515763400_bib21) 2021; 911
Simonyan (2021111107515763400_bib57) 2014
Bryan (2021111107515763400_bib6) 2014; 211
Serra (2021111107515763400_bib55) 2015; 448
Carrillo (2021111107515763400_bib7) 2014; 439
Bretonnière (2021111107515763400_bib4) 2021
Duchesne (2021111107515763400_bib17) 2021
Hodgson (2021111107515763400_bib32) 2021
Mandal (2021111107515763400_bib41) 2020; 634
Curtis (2021111107515763400_bib14) 2021
Offringa (2021111107515763400_bib46) 2014; 444
Girard (2021111107515763400_bib24) 2015; 10
Reiprich (2021111107515763400_bib49) 2021; 647
Smirnov (2021111107515763400_bib59) 2011; 527
Godfrey (2021111107515763400_bib26) 2017; 471
Cavanagh (2021111107515763400_bib8) 2021
Sault (2021111107515763400_bib53) 1995
Eckert (2021111107515763400_bib18) 2015; 528
Roscani (2021111107515763400_bib51) 2020; 643
Govoni (2021111107515763400_bib27) 2019; 364
Cen (2021111107515763400_bib9) 1999; 514
Offringa (2021111107515763400_bib45) 2017; 471
Puetter (2021111107515763400_bib47) 2005; 43
Junklewitz (2021111107515763400_bib35) 2016; 586
Kim (2021111107515763400_bib36) 2021
Cornwell (2021111107515763400_bib13) 1985; 143
Vazza (2021111107515763400_bib66) 2015
Tasse (2021111107515763400_bib61) 2018; 611
Botteon (2021111107515763400_bib3) 2020; 499
Dabbech (2021111107515763400_bib15) 2015; 576
Vernstrom (2021111107515763400_bib70) 2017; 467
References_xml – start-page: A80
  volume-title: A&A
  year: 2021
  ident: 2021111107515763400_bib40
  doi: 10.1051/0004-6361/202140526
– volume: 471
  start-page: 891
  year: 2017
  ident: 2021111107515763400_bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1538
– year: 2015
  ident: 2021111107515763400_bib50
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015
– volume: 375
  start-page: 77
  year: 2007
  ident: 2021111107515763400_bib33
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11111.x
– start-page: e503
  volume-title: PASA
  year: 2021
  ident: 2021111107515763400_bib17
  doi: 10.1017/pasa.2021.45
– volume: 527
  start-page: A107
  year: 2011
  ident: 2021111107515763400_bib59
  publication-title: A&A
  doi: 10.1051/0004-6361/201116434
– volume: 645
  start-page: A89
  year: 2021
  ident: 2021111107515763400_bib43
  publication-title: A&A
  doi: 10.1051/0004-6361/202038500
– volume: 494
  start-page: 5603
  year: 2020
  ident: 2021111107515763400_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1032
– start-page: 580
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: 2021111107515763400_bib25
– volume-title: Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: 2021111107515763400_bib60
– volume: 580
  start-page: A119
  year: 2015
  ident: 2021111107515763400_bib67
  publication-title: A&A
  doi: 10.1051/0004-6361/201526228
– volume: 634
  start-page: A4
  year: 2020
  ident: 2021111107515763400_bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201936560
– volume: 643
  start-page: A43
  year: 2020
  ident: 2021111107515763400_bib51
  publication-title: A&A
  doi: 10.1051/0004-6361/201936278
– start-page: 770
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: 2021111107515763400_bib30
– volume: 439
  start-page: 3591
  year: 2014
  ident: 2021111107515763400_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stu202
– volume: 576
  start-page: A7
  year: 2015
  ident: 2021111107515763400_bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201424602
– volume: 622
  start-page: A1
  year: 2019
  ident: 2021111107515763400_bib56
  publication-title: A&A
  doi: 10.1051/0004-6361/201833559
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: 2021111107515763400_bib37
– year: 2018
  ident: 2021111107515763400_bib64
– start-page: 64
  volume-title: The Many Facets of Extragalactic Radio Surveys: Towards New Scientific Challenges
  year: 2015
  ident: 2021111107515763400_bib66
– volume-title: ASP Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II
  year: 1999
  ident: 2021111107515763400_bib62
– volume: 556
  start-page: A2
  year: 2013
  ident: 2021111107515763400_bib65
  publication-title: A&A
  doi: 10.1051/0004-6361/201220873
– volume: 15
  start-page: 417
  year: 1974
  ident: 2021111107515763400_bib34
  publication-title: A&AS
– volume: 528
  start-page: 105
  year: 2015
  ident: 2021111107515763400_bib18
  publication-title: Nature
  doi: 10.1038/nature16058
– volume: 422
  start-page: 1812
  year: 2012
  ident: 2021111107515763400_bib29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20768.x
– volume: 911
  start-page: 56
  year: 2021
  ident: 2021111107515763400_bib21
  publication-title: ApJ
  doi: 10.3847/1538-4357/abddbb
– year: 2021
  ident: 2021111107515763400_bib14
– volume: 471
  start-page: 301
  year: 2017
  ident: 2021111107515763400_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1547
– volume: 89
  start-page: 1076
  year: 1984
  ident: 2021111107515763400_bib54
  publication-title: AJ
  doi: 10.1086/113605
– volume: 505
  start-page: 4178
  year: 2021
  ident: 2021111107515763400_bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1301
– volume: 118
  start-page: 2022038118
  year: 2021
  ident: 2021111107515763400_bib39
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2022038118
– start-page: 659
  volume-title: MNRAS
  year: 2021
  ident: 2021111107515763400_bib8
  doi: 10.1093/mnras/stab1552
– year: 2014
  ident: 2021111107515763400_bib57
– volume: 480
  start-page: 3749
  year: 2018
  ident: 2021111107515763400_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2102
– volume: 499
  start-page: L11
  year: 2020
  ident: 2021111107515763400_bib3
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa142
– year: 2021
  ident: 2021111107515763400_bib4
– volume: 143
  start-page: 77
  year: 1985
  ident: 2021111107515763400_bib13
  publication-title: A&A
– volume: 500
  start-page: 5350
  year: 2021
  ident: 2021111107515763400_bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3532
– volume: 86
  start-page: 2278
  year: 1998
  ident: 2021111107515763400_bib38
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 527
  start-page: A106
  year: 2011
  ident: 2021111107515763400_bib58
  publication-title: A&A
  doi: 10.1051/0004-6361/201016082
– volume: 647
  start-page: A2
  year: 2021
  ident: 2021111107515763400_bib49
  publication-title: A&A
  doi: 10.1051/0004-6361/202039590
– start-page: 151
  volume-title: ASP Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II
  year: 1999
  ident: 2021111107515763400_bib12
– volume: 211
  start-page: 19
  year: 2014
  ident: 2021111107515763400_bib6
  publication-title: ApJS
  doi: 10.1088/0067-0049/211/2/19
– start-page: A22
  volume-title: A&A
  year: 2021
  ident: 2021111107515763400_bib36
  doi: 10.1051/0004-6361/202140369
– volume: 231
  start-page: 289
  year: 1933
  ident: 2021111107515763400_bib44
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.1933.0009
– volume: 532
  start-page: A71
  year: 2011
  ident: 2021111107515763400_bib48
  publication-title: A&A
  doi: 10.1051/0004-6361/201117104
– volume: 467
  start-page: 4914
  year: 2017
  ident: 2021111107515763400_bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/stx424
– start-page: 591
  volume-title: ASP Conf. Ser. Vol. 527, Astronomical Data Analysis Software and Systems XXIX
  year: 2020
  ident: 2021111107515763400_bib72
– volume: 131
  start-page: 251
  year: 2020
  ident: 2021111107515763400_bib63
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– volume: 364
  start-page: 981
  year: 2019
  ident: 2021111107515763400_bib27
  publication-title: Science
  doi: 10.1126/science.aat7500
– year: 2015
  ident: 2021111107515763400_bib10
  publication-title: Keras
– volume: 586
  start-page: A76
  year: 2016
  ident: 2021111107515763400_bib35
  publication-title: A&A
  doi: 10.1051/0004-6361/201323094
– volume: 43
  start-page: 139
  year: 2005
  ident: 2021111107515763400_bib47
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.43.112904.104850
– start-page: e047
  volume-title: PASA
  year: 2021
  ident: 2021111107515763400_bib32
  doi: 10.1017/pasa.2021.32
– volume: 627
  start-page: A5
  year: 2019
  ident: 2021111107515763400_bib68
  publication-title: A&A
  doi: 10.1051/0004-6361/201935439
– year: 2015
  ident: 2021111107515763400_bib1
  publication-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– volume: 89
  start-page: 377
  year: 1980
  ident: 2021111107515763400_bib11
  publication-title: A&A
– start-page: 127
  volume-title: ASP Conf. Ser. Vol. 376, Astronomical Data Analysis Software and Systems XVI
  year: 2007
  ident: 2021111107515763400_bib42
– start-page: 109
  volume-title: AIPS, the VLA, and the VLBA
  year: 2003
  ident: 2021111107515763400_bib28
  doi: 10.1007/0-306-48080-8_7
– volume: 514
  start-page: 1
  year: 1999
  ident: 2021111107515763400_bib9
  publication-title: ApJ
  doi: 10.1086/306949
– volume: 909
  start-page: 198
  year: 2021
  ident: 2021111107515763400_bib31
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe384
– volume: 444
  start-page: 606
  year: 2014
  ident: 2021111107515763400_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1368
– volume: 32
  start-page: 577
  year: 2011
  ident: 2021111107515763400_bib5
  publication-title: JA&A
  doi: 10.1007/s12036-011-9114-4
– volume: 907
  start-page: 32
  year: 2021
  ident: 2021111107515763400_bib2
  publication-title: ApJ
  doi: 10.3847/1538-4357/abcb8f
– start-page: L2
  volume-title: ApJL
  year: 2021
  ident: 2021111107515763400_bib19
  doi: 10.3847/2041-8213/ac116f
– start-page: 206
  volume-title: AJ
  year: 2021
  ident: 2021111107515763400_bib52
  doi: 10.3847/1538-3881/ac1426
– start-page: 433
  volume-title: ASP Conf. Ser. Vol. 77, Astronomical Data Analysis Software and Systems IV
  year: 1995
  ident: 2021111107515763400_bib53
– volume: 10
  start-page: C08013
  year: 2015
  ident: 2021111107515763400_bib24
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/10/08/C08013
– volume: 611
  start-page: A87
  year: 2018
  ident: 2021111107515763400_bib61
  publication-title: A&A
  doi: 10.1051/0004-6361/201731474
– volume: 552
  start-page: 473
  year: 2001
  ident: 2021111107515763400_bib16
  publication-title: ApJ
  doi: 10.1086/320548
– volume: 448
  start-page: 1922
  year: 2015
  ident: 2021111107515763400_bib55
  publication-title: MNRAS
  doi: 10.1093/mnras/stv079
SSID ssj0004326
Score 2.5874226
Snippet ABSTRACT We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes,...
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 990
Title Convolutional deep denoising autoencoders for radio astronomical images
Volume 509
WOSCitedRecordID wos000741326000067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kePDioyqtLxYRPYU22c0mOZZi9WL1UKG3sK9IoE1Kkhb8985u0vpAUS8hIZPdMDNkv5nNfIPQVQI-In0qHOIlzKGukA5XnDhJIiHgoh5VTNlmE8F4HE6n0VNDFl1-s4Ufkd48K3jZA6wkIPQ2zJ-uHxqPnjxO3ysgiW2sZgkYIQRwN_SMXx__tPyYkrYPq8lo7x_vsY92G8iIB7WND9CWztqoMyhNEjufv-JrbM_rHEXZRt0HAMJ5YfPlcHM4SwGV2qtDdDfMs1XjbTCm0noBhyxPTcoA82WVG2JL83MzBjSLC67SHPNmKmNPDIO96PIIPY9uJ8N7p-ml4Ejikgp0HwpbciAiGnKutCKa9RWjSshARtIPAsG5pxRn2tVSsNBnmvFQhK4EWCTJMWpleaY7CBOV0CCS1HwOaJKoSEDUBlEcE_1Q-knURc5axbFsiMZNv4tZXG94k9hqMl5rsotuNvKLmmLjR8lLsNgvQid_ETpFO56pY7C5lDPUqoqlPkfbclWlZXFhfesN6MLSIQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+deep+denoising+autoencoders+for+radio+astronomical+images&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gheller%2C+C&rft.au=Vazza%2C+F&rft.date=2022-01-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=509&rft.issue=1&rft.spage=990&rft.epage=1009&rft_id=info:doi/10.1093%2Fmnras%2Fstab3044&rft.externalDocID=10.1093%2Fmnras%2Fstab3044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon