Prediction of Time Series Empowered with a Novel SREKRLS Algorithm
For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ort...
Uložené v:
| Vydané v: | Computers, materials & continua Ročník 67; číslo 2; s. 1413 - 1427 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Henderson
Tech Science Press
2021
|
| Predmet: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and non-stationary MackeyGlass Time Series, along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness. By the learning curves regarding mean square error (MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS. This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays, which is efficient in developing very-large-scale integration (VLSI) applications with non-linear input data. Multiple experiments are carried out to validate the reliability, effectiveness, and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares (EKRLS) algorithm. |
|---|---|
| AbstractList | For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and non-stationary MackeyGlass Time Series, along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness. By the learning curves regarding mean square error (MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS. This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays, which is efficient in developing very-large-scale integration (VLSI) applications with non-linear input data. Multiple experiments are carried out to validate the reliability, effectiveness, and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares (EKRLS) algorithm. |
| Author | Javed, Yasir Majeed, Rizwan Adnan Khan, Muhammad Ahmad, Fahad Saqib Nawaz, Muhammad Shoaib, Bilal Iqbal, Abid Adeel Ashraf, Muhammad Idrees, Muhammad |
| Author_xml | – sequence: 1 givenname: Bilal surname: Shoaib fullname: Shoaib, Bilal – sequence: 2 givenname: Yasir surname: Javed fullname: Javed, Yasir – sequence: 3 givenname: Muhammad surname: Adnan Khan fullname: Adnan Khan, Muhammad – sequence: 4 givenname: Fahad surname: Ahmad fullname: Ahmad, Fahad – sequence: 5 givenname: Rizwan surname: Majeed fullname: Majeed, Rizwan – sequence: 6 givenname: Muhammad surname: Saqib Nawaz fullname: Saqib Nawaz, Muhammad – sequence: 7 givenname: Muhammad surname: Adeel Ashraf fullname: Adeel Ashraf, Muhammad – sequence: 8 givenname: Abid surname: Iqbal fullname: Iqbal, Abid – sequence: 9 givenname: Muhammad surname: Idrees fullname: Idrees, Muhammad |
| BookMark | eNp1kEtPAjEUhRuDiYDuXTZxPdjH0E6XSBCNRA3guil9aMnMFNtB4r93RlwYE1f3Juec-_gGoFeH2gJwidGIEobya13pEUEEjxAeIyFOQB-Pc5YRQljvV38GBiltEaKMCtQHN8_RGq8bH2oYHFz7ysKVjd4mOKt24WBbGR588wYVfAwftoSr5exhuVjBSfkaYitU5-DUqTLZi586BC-3s_X0Lls8ze-nk0WmKaZN5oyjoiAGGUU5yy0nxgqueLFxhTaWFkIJgoVjlOVjkW8cNYrn2hm2Ybo7dwiujnN3MbzvbWrkNuxj3a6UhAnMC4oQb13s6NIxpBStk9o3qvuvicqXEiP5zUu2vGTHSx55tUH0J7iLvlLx8__IFymJbkQ |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_023557 crossref_primary_10_32604_cmc_2022_023124 crossref_primary_10_32604_cmc_2022_023480 |
| Cites_doi | 10.1109/ACCESS.2018.2882824 10.7763/IJCTE.2013.V5.729 10.1109/TCYB.2018.2789686 10.1109/TSP.2017.2752695 10.1016/j.neunet.2018.11.002 10.1109/TFUZZ.2015.2446535 10.1109/TSP.2012.2186132 10.1007/s40565-016-0259-7 10.1016/j.neunet.2011.12.006 10.1016/j.ymssp.2018.03.047 10.1007/s11063-013-9303-z 10.4028/www.scientific.net/AMM.432.478 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2021.015099 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 1427 |
| ExternalDocumentID | 10_32604_cmc_2021_015099 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-fdf3982d0da3764e72de97a78bf8cde389a9219f6364594bf3da74cfd6b6c0363 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616667200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Nov 09 08:00:40 EST 2025 Sat Nov 29 05:53:47 EST 2025 Tue Nov 18 21:51:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-fdf3982d0da3764e72de97a78bf8cde389a9219f6364594bf3da74cfd6b6c0363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2691783007?pq-origsite=%requestingapplication% |
| PQID | 2691783007 |
| PQPubID | 2048737 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2691783007 crossref_citationtrail_10_32604_cmc_2021_015099 crossref_primary_10_32604_cmc_2021_015099 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2021 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Liu (ref2) 2011; 57 Xu (ref5) 2017; 5 Zhou (ref6) 2018; 111 Parreira (ref3) 2012; 60 Li (ref4) 2017; 65 Han (ref11) 2018; 49 Haykin (ref1) 2010 Laufer (ref15) 2013; 5 Zhu (ref8) 2012; 32 Laufer (ref10) 2014; 39 Zhou (ref9) 2018; 6 Han (ref14) 2018; 49 Lin (ref16) 2016; 24 Scardapane (ref7) 2019; 110 Cheng (ref12) 2013; 432 Laufer (ref13) 2013; 5 |
| References_xml | – start-page: 268 year: 2010 ident: ref1 publication-title: Neural Networks and Learning Machines – volume: 57 start-page: 27 year: 2011 ident: ref2 article-title: Kernel least-mean-square algorithm publication-title: Kernel Adaptive Filtering: A Comprehensive Introduction – volume: 6 start-page: 74687 year: 2018 ident: ref9 article-title: Parsimonious kernel recursive least squares algorithm for aero-engine health diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882824 – volume: 5 start-page: 454 year: 2013 ident: ref13 article-title: Kernel recursive least squares for the CMAC neural network publication-title: International Journal of Computer Theory and Engineering doi: 10.7763/IJCTE.2013.V5.729 – volume: 49 start-page: 1160 year: 2018 ident: ref14 article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2789686 – volume: 65 start-page: 6520 year: 2017 ident: ref4 article-title: Transfer learning in adaptive filters: The nearest instance centroid-estimation kernel least-mean-square algorithm publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2017.2752695 – volume: 110 start-page: 19 year: 2019 ident: ref7 article-title: Kafnets: Kernel-based non-parametric activation functions for neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2018.11.002 – volume: 24 start-page: 153 year: 2016 ident: ref16 article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2446535 – volume: 5 start-page: 454 year: 2013 ident: ref15 article-title: Kernel recursive least squares for the CMAC neural network publication-title: International Journal of Computer Theory and Engineering doi: 10.7763/IJCTE.2013.V5.729 – volume: 60 start-page: 2208 year: 2012 ident: ref3 article-title: Stochastic behaviour analysis of the Gaussian kernel least-mean-square algorithm publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2186132 – volume: 5 start-page: 735 year: 2017 ident: ref5 article-title: Modelling of wind power forecasting errors based on kernel recursive least-squares method publication-title: Journal of Modern Power Systems and Clean Energy doi: 10.1007/s40565-016-0259-7 – volume: 32 start-page: 349 year: 2012 ident: ref8 article-title: A novel extended kernel recursive least squares algorithm publication-title: Neural Networks doi: 10.1016/j.neunet.2011.12.006 – volume: 49 start-page: 1160 year: 2018 ident: ref11 article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2789686 – volume: 111 start-page: 68 year: 2018 ident: ref6 article-title: Echo state kernel recursive least squares algorithm for machine condition prediction publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.03.047 – volume: 39 start-page: 269 year: 2014 ident: ref10 article-title: The kernel recursive least squares cmac with vector eligibility publication-title: Neural Processing Letters doi: 10.1007/s11063-013-9303-z – volume: 432 start-page: 478 year: 2013 ident: ref12 article-title: The fuzzy CMAC based on RLS algorithm publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.432.478 |
| SSID | ssj0036390 |
| Score | 2.236998 |
| Snippet | For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1413 |
| SubjectTerms | Algorithms Integrated circuits Kernels Learning curves Least squares Mathematical analysis Matrices (mathematics) Noise levels Symmetry Systolic arrays Time series Very large scale integration |
| Title | Prediction of Time Series Empowered with a Novel SREKRLS Algorithm |
| URI | https://www.proquest.com/docview/2691783007 |
| Volume | 67 |
| WOSCitedRecordID | wos000616667200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5By8BCeYq3PLAwmKaOG8cTKqgIBFRRAQmmKPEDkPqiLfx-fInDY2FijuNEPvu78539fQBHqi00U21NW0ZYyjMdUBccRVRLbTjys2dcFWIToteLHx9l4q9Hz_yxygoTC6Au2Z7x3LYD4aYeK8yYN1nkthlx6Bzc6eSNooYU1lq9oMYi1JF4K65BPbm6TZ4qZA6dNy4uSLZ5RJnzbWXZ0gUwAW-qIRIastYJpgAKJtgfbuo3Sheu56Lxvz-9Cis-BCWdcs6swYIZrUOjkncgfrVvwFkyxSoOWo6MLcHLIgSTaWZGusMJqqsZTTCPSzLSG3-YAbnrd6_7N3ekM3h2352_DDfh4aJ7f35JveQCVWErnFOrbShjpgOdOeThRjBtpMhEnNtYaeOim0w6jLMRVi8lz22oM8GV1VEeKRzgLaiNxiOzDUS3A2MMky0mDA9z19qoUEjJslxYZYMdaFYjnCrPR46yGIPU7UsKm6TOJinaJC1tsgPHX29MSi6OP9ruVxZJ_aqcpd8G2P378R4sY19lqmUfavPpuzmAJfUxf51ND6F-1u0l_UM_vT4BdmXdHw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkulKcoLeADHDiYbLzOen1AqIVUjZJGUVukctru2mNAyosktOJP8Rs7sw8el9564GyvJe83nqc9H8Ar1zVeua6XHTRB6txHkpyjRHrrUXN_9ly7kmzCjEbp2Zkdb8Cv5i0MX6tsdGKpqP3ccY68rRIKLNKYTNr7xXfJrFFcXW0oNCqxGODPSwrZVu_6Hwnf10od9E4_HMqaVUC6uBOvZfAhtqnykc_pcGk0yqM1uUmLkDqPZMBzS8c4JFygs7oIsc-NdsEnReK47Enr3oJNTcKetmBz3D8af250P42WWR3ySxKpyHpWhVFykSLddlNumag6bznJUPaa_csQ_msHSuN2sPW__Zb7cK92o8VeJfcPYANnD2GroagQtcZ6BPvjJVeiWPrEPAh-8CI4IYgr0ZsumCEOveBctMjFaH6BE3Fy3BscD0_E3uQL7XP9dfoYPt3ITp5Aazaf4VMQvhshorIdZVDHBc1GFxtrVV6Y4EK0De0Gw8zVPdWZ2mOSUWxVop4R6hmjnlWob8Ob318sqn4i18zdbTDPas2yyv4A_uz64Zdw5_D0aJgN-6PBDtzldavU0S601ssf-Bxuu4v1t9XyRS3EAs5vWkCuAJdHLkg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Time+Series+Empowered+with+a+Novel+SREKRLS+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Shoaib%2C+Bilal&rft.au=Javed%2C+Yasir&rft.au=Adnan+Khan%2C+Muhammad&rft.au=Ahmad%2C+Fahad&rft.date=2021&rft.issn=1546-2226&rft.volume=67&rft.issue=2&rft.spage=1413&rft.epage=1427&rft_id=info:doi/10.32604%2Fcmc.2021.015099&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_015099 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |