Prediction of Time Series Empowered with a Novel SREKRLS Algorithm

For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ort...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers, materials & continua Ročník 67; číslo 2; s. 1413 - 1427
Hlavní autori: Shoaib, Bilal, Javed, Yasir, Adnan Khan, Muhammad, Ahmad, Fahad, Majeed, Rizwan, Saqib Nawaz, Muhammad, Adeel Ashraf, Muhammad, Iqbal, Abid, Idrees, Muhammad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Henderson Tech Science Press 2021
Predmet:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and non-stationary MackeyGlass Time Series, along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness. By the learning curves regarding mean square error (MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS. This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays, which is efficient in developing very-large-scale integration (VLSI) applications with non-linear input data. Multiple experiments are carried out to validate the reliability, effectiveness, and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares (EKRLS) algorithm.
AbstractList For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and non-stationary MackeyGlass Time Series, along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness. By the learning curves regarding mean square error (MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS. This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays, which is efficient in developing very-large-scale integration (VLSI) applications with non-linear input data. Multiple experiments are carried out to validate the reliability, effectiveness, and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares (EKRLS) algorithm.
Author Javed, Yasir
Majeed, Rizwan
Adnan Khan, Muhammad
Ahmad, Fahad
Saqib Nawaz, Muhammad
Shoaib, Bilal
Iqbal, Abid
Adeel Ashraf, Muhammad
Idrees, Muhammad
Author_xml – sequence: 1
  givenname: Bilal
  surname: Shoaib
  fullname: Shoaib, Bilal
– sequence: 2
  givenname: Yasir
  surname: Javed
  fullname: Javed, Yasir
– sequence: 3
  givenname: Muhammad
  surname: Adnan Khan
  fullname: Adnan Khan, Muhammad
– sequence: 4
  givenname: Fahad
  surname: Ahmad
  fullname: Ahmad, Fahad
– sequence: 5
  givenname: Rizwan
  surname: Majeed
  fullname: Majeed, Rizwan
– sequence: 6
  givenname: Muhammad
  surname: Saqib Nawaz
  fullname: Saqib Nawaz, Muhammad
– sequence: 7
  givenname: Muhammad
  surname: Adeel Ashraf
  fullname: Adeel Ashraf, Muhammad
– sequence: 8
  givenname: Abid
  surname: Iqbal
  fullname: Iqbal, Abid
– sequence: 9
  givenname: Muhammad
  surname: Idrees
  fullname: Idrees, Muhammad
BookMark eNp1kEtPAjEUhRuDiYDuXTZxPdjH0E6XSBCNRA3guil9aMnMFNtB4r93RlwYE1f3Juec-_gGoFeH2gJwidGIEobya13pEUEEjxAeIyFOQB-Pc5YRQljvV38GBiltEaKMCtQHN8_RGq8bH2oYHFz7ysKVjd4mOKt24WBbGR588wYVfAwftoSr5exhuVjBSfkaYitU5-DUqTLZi586BC-3s_X0Lls8ze-nk0WmKaZN5oyjoiAGGUU5yy0nxgqueLFxhTaWFkIJgoVjlOVjkW8cNYrn2hm2Ybo7dwiujnN3MbzvbWrkNuxj3a6UhAnMC4oQb13s6NIxpBStk9o3qvuvicqXEiP5zUu2vGTHSx55tUH0J7iLvlLx8__IFymJbkQ
CitedBy_id crossref_primary_10_32604_cmc_2022_023557
crossref_primary_10_32604_cmc_2022_023124
crossref_primary_10_32604_cmc_2022_023480
Cites_doi 10.1109/ACCESS.2018.2882824
10.7763/IJCTE.2013.V5.729
10.1109/TCYB.2018.2789686
10.1109/TSP.2017.2752695
10.1016/j.neunet.2018.11.002
10.1109/TFUZZ.2015.2446535
10.1109/TSP.2012.2186132
10.1007/s40565-016-0259-7
10.1016/j.neunet.2011.12.006
10.1016/j.ymssp.2018.03.047
10.1007/s11063-013-9303-z
10.4028/www.scientific.net/AMM.432.478
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2021.015099
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1427
ExternalDocumentID 10_32604_cmc_2021_015099
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-fdf3982d0da3764e72de97a78bf8cde389a9219f6364594bf3da74cfd6b6c0363
IEDL.DBID PIMPY
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616667200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 08:00:40 EST 2025
Sat Nov 29 05:53:47 EST 2025
Tue Nov 18 21:51:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-fdf3982d0da3764e72de97a78bf8cde389a9219f6364594bf3da74cfd6b6c0363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2691783007?pq-origsite=%requestingapplication%
PQID 2691783007
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2691783007
crossref_citationtrail_10_32604_cmc_2021_015099
crossref_primary_10_32604_cmc_2021_015099
PublicationCentury 2000
PublicationDate 2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Liu (ref2) 2011; 57
Xu (ref5) 2017; 5
Zhou (ref6) 2018; 111
Parreira (ref3) 2012; 60
Li (ref4) 2017; 65
Han (ref11) 2018; 49
Haykin (ref1) 2010
Laufer (ref15) 2013; 5
Zhu (ref8) 2012; 32
Laufer (ref10) 2014; 39
Zhou (ref9) 2018; 6
Han (ref14) 2018; 49
Lin (ref16) 2016; 24
Scardapane (ref7) 2019; 110
Cheng (ref12) 2013; 432
Laufer (ref13) 2013; 5
References_xml – start-page: 268
  year: 2010
  ident: ref1
  publication-title: Neural Networks and Learning Machines
– volume: 57
  start-page: 27
  year: 2011
  ident: ref2
  article-title: Kernel least-mean-square algorithm
  publication-title: Kernel Adaptive Filtering: A Comprehensive Introduction
– volume: 6
  start-page: 74687
  year: 2018
  ident: ref9
  article-title: Parsimonious kernel recursive least squares algorithm for aero-engine health diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882824
– volume: 5
  start-page: 454
  year: 2013
  ident: ref13
  article-title: Kernel recursive least squares for the CMAC neural network
  publication-title: International Journal of Computer Theory and Engineering
  doi: 10.7763/IJCTE.2013.V5.729
– volume: 49
  start-page: 1160
  year: 2018
  ident: ref14
  article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2789686
– volume: 65
  start-page: 6520
  year: 2017
  ident: ref4
  article-title: Transfer learning in adaptive filters: The nearest instance centroid-estimation kernel least-mean-square algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2017.2752695
– volume: 110
  start-page: 19
  year: 2019
  ident: ref7
  article-title: Kafnets: Kernel-based non-parametric activation functions for neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.11.002
– volume: 24
  start-page: 153
  year: 2016
  ident: ref16
  article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2446535
– volume: 5
  start-page: 454
  year: 2013
  ident: ref15
  article-title: Kernel recursive least squares for the CMAC neural network
  publication-title: International Journal of Computer Theory and Engineering
  doi: 10.7763/IJCTE.2013.V5.729
– volume: 60
  start-page: 2208
  year: 2012
  ident: ref3
  article-title: Stochastic behaviour analysis of the Gaussian kernel least-mean-square algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2186132
– volume: 5
  start-page: 735
  year: 2017
  ident: ref5
  article-title: Modelling of wind power forecasting errors based on kernel recursive least-squares method
  publication-title: Journal of Modern Power Systems and Clean Energy
  doi: 10.1007/s40565-016-0259-7
– volume: 32
  start-page: 349
  year: 2012
  ident: ref8
  article-title: A novel extended kernel recursive least squares algorithm
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.12.006
– volume: 49
  start-page: 1160
  year: 2018
  ident: ref11
  article-title: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2789686
– volume: 111
  start-page: 68
  year: 2018
  ident: ref6
  article-title: Echo state kernel recursive least squares algorithm for machine condition prediction
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.03.047
– volume: 39
  start-page: 269
  year: 2014
  ident: ref10
  article-title: The kernel recursive least squares cmac with vector eligibility
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-013-9303-z
– volume: 432
  start-page: 478
  year: 2013
  ident: ref12
  article-title: The fuzzy CMAC based on RLS algorithm
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.432.478
SSID ssj0036390
Score 2.236998
Snippet For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1413
SubjectTerms Algorithms
Integrated circuits
Kernels
Learning curves
Least squares
Mathematical analysis
Matrices (mathematics)
Noise levels
Symmetry
Systolic arrays
Time series
Very large scale integration
Title Prediction of Time Series Empowered with a Novel SREKRLS Algorithm
URI https://www.proquest.com/docview/2691783007
Volume 67
WOSCitedRecordID wos000616667200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5By8BCeYq3PLAwmKaOG8cTKqgIBFRRAQmmKPEDkPqiLfx-fInDY2FijuNEPvu78539fQBHqi00U21NW0ZYyjMdUBccRVRLbTjys2dcFWIToteLHx9l4q9Hz_yxygoTC6Au2Z7x3LYD4aYeK8yYN1nkthlx6Bzc6eSNooYU1lq9oMYi1JF4K65BPbm6TZ4qZA6dNy4uSLZ5RJnzbWXZ0gUwAW-qIRIastYJpgAKJtgfbuo3Sheu56Lxvz-9Cis-BCWdcs6swYIZrUOjkncgfrVvwFkyxSoOWo6MLcHLIgSTaWZGusMJqqsZTTCPSzLSG3-YAbnrd6_7N3ekM3h2352_DDfh4aJ7f35JveQCVWErnFOrbShjpgOdOeThRjBtpMhEnNtYaeOim0w6jLMRVi8lz22oM8GV1VEeKRzgLaiNxiOzDUS3A2MMky0mDA9z19qoUEjJslxYZYMdaFYjnCrPR46yGIPU7UsKm6TOJinaJC1tsgPHX29MSi6OP9ruVxZJ_aqcpd8G2P378R4sY19lqmUfavPpuzmAJfUxf51ND6F-1u0l_UM_vT4BdmXdHw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkulKcoLeADHDiYbLzOen1AqIVUjZJGUVukctru2mNAyosktOJP8Rs7sw8el9564GyvJe83nqc9H8Ar1zVeua6XHTRB6txHkpyjRHrrUXN_9ly7kmzCjEbp2Zkdb8Cv5i0MX6tsdGKpqP3ccY68rRIKLNKYTNr7xXfJrFFcXW0oNCqxGODPSwrZVu_6Hwnf10od9E4_HMqaVUC6uBOvZfAhtqnykc_pcGk0yqM1uUmLkDqPZMBzS8c4JFygs7oIsc-NdsEnReK47Enr3oJNTcKetmBz3D8af250P42WWR3ySxKpyHpWhVFykSLddlNumag6bznJUPaa_csQ_msHSuN2sPW__Zb7cK92o8VeJfcPYANnD2GroagQtcZ6BPvjJVeiWPrEPAh-8CI4IYgr0ZsumCEOveBctMjFaH6BE3Fy3BscD0_E3uQL7XP9dfoYPt3ITp5Aazaf4VMQvhshorIdZVDHBc1GFxtrVV6Y4EK0De0Gw8zVPdWZ2mOSUWxVop4R6hmjnlWob8Ob318sqn4i18zdbTDPas2yyv4A_uz64Zdw5_D0aJgN-6PBDtzldavU0S601ssf-Bxuu4v1t9XyRS3EAs5vWkCuAJdHLkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Time+Series+Empowered+with+a+Novel+SREKRLS+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Shoaib%2C+Bilal&rft.au=Javed%2C+Yasir&rft.au=Adnan+Khan%2C+Muhammad&rft.au=Ahmad%2C+Fahad&rft.date=2021&rft.issn=1546-2226&rft.volume=67&rft.issue=2&rft.spage=1413&rft.epage=1427&rft_id=info:doi/10.32604%2Fcmc.2021.015099&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_015099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon