Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy manageme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua Jg. 75; H. 3; S. 6375 - 6393
Hauptverfasser: Mughees, Neelam, Hussain Jaffery, Mujtaba, Mughees, Abdullah, Mughees, Anam, Ejsmont, Krzysztof
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Henderson Tech Science Press 2023
Schlagworte:
ISSN:1546-2226, 1546-2218, 1546-2226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB. To create a deep stacked S2SAE prediction model, a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence, extract its features, and then reconstruct it to produce the forecasts. Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm. Moreover, the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep, and shallow stacked S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, gated recurrent unit-based deep stacked S2SAE model, and Bi-LSTM-based shallow stacked S2SAE model. All these models were also optimized and modeled in MATLAB. The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%, which evidenced the high reliability of the proposed forecasting.
AbstractList Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB. To create a deep stacked S2SAE prediction model, a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence, extract its features, and then reconstruct it to produce the forecasts. Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm. Moreover, the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep, and shallow stacked S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, gated recurrent unit-based deep stacked S2SAE model, and Bi-LSTM-based shallow stacked S2SAE model. All these models were also optimized and modeled in MATLAB. The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%, which evidenced the high reliability of the proposed forecasting.
Author Mughees, Anam
Mughees, Abdullah
Ejsmont, Krzysztof
Mughees, Neelam
Hussain Jaffery, Mujtaba
Author_xml – sequence: 1
  givenname: Neelam
  surname: Mughees
  fullname: Mughees, Neelam
– sequence: 2
  givenname: Mujtaba
  surname: Hussain Jaffery
  fullname: Hussain Jaffery, Mujtaba
– sequence: 3
  givenname: Abdullah
  surname: Mughees
  fullname: Mughees, Abdullah
– sequence: 4
  givenname: Anam
  surname: Mughees
  fullname: Mughees, Anam
– sequence: 5
  givenname: Krzysztof
  surname: Ejsmont
  fullname: Ejsmont, Krzysztof
BookMark eNp1kL1PwzAQxS0EEm1hZ7TEnOKPxEnGtlCoVMSQIkbLcS7IJY2D7Q7895gWJITEcvdOut_d0xuj0972gNAVJVPOBElv9E5PGWF8SniRifQEjWiWioQxJk5_6XM09n5LCBe8JCPUzU2yrjaPyVx5aPAtwICroPRbHCp430OvIQk2-dF4tg82CtuAw611eGkdaOWD6V9xZTvl8Mo51RgVjO2x6hv8YmKpBoDmAp21qvNw-d0n6Hl5t1k8JOun-9Vitk40pzwkbQ05b3OSc9KQnEAaUaghS0FB2ZCWUaHbnFKe6YIAU0UNwCNTN0SJgtZ8gq6Pdwdno20f5NbuXR9fSk7LsuAZy0TcEsct7az3DlqpTTjYDk6ZTlIiD8nKmKz8SlYek40g-QMOzuyU-_gf-QQNKX53
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126624
crossref_primary_10_1109_ACCESS_2024_3521318
crossref_primary_10_1016_j_renene_2024_122053
crossref_primary_10_1109_ACCESS_2025_3591091
crossref_primary_10_1093_ce_zkad046
crossref_primary_10_1002_asjc_3758
crossref_primary_10_1186_s42162_025_00571_z
Cites_doi 10.1109/TII.2019.2955470
10.1016/j.energy.2020.117239
10.1016/j.egyr.2022.10.402
10.1002/9781119508311.ch25
10.3390/en11071636
33484461
10.1016/j.apenergy.2018.04.103
10.1016/j.apenergy.2019.113541
10.5439/1052221
10.1016/j.procs.2019.08.007
33733124
33167424
10.1016/j.apenergy.2019.113980
10.1080/17445760.2017.1404601
10.1007/s00521-020-05035-x
10.1016/j.engappai.2022.105287
10.1016/j.eswa.2021.114844
10.1007/s12530-020-09345-2
10.3390/en12163199
10.3390/en11051188
10.1016/j.asoc.2020.106996
10.11591/ijeecs.v18.i1.pp150-157
10.1016/j.jclepro.2021.128566
10.1016/j.renene.2020.05.161
10.1016/j.chaos.2019.109407
36568128
10.1016/j.cpc.2021.108201
10.1109/ACCESS.2020.3004025
10.1016/j.jclepro.2018.07.164
10.1016/j.neucom.2022.06.111
10.25103/jestr.133.22
10.1109/ACCESS.2018.2869981
10.3390/sym11020240
10.1007/978-3-030-22475-2_1
10.3390/en15114032
10.1371/journal.pone.0196871
10.1002/jnm.2963
10.1016/j.ijleo.2021.168515
10.1016/j.enconman.2020.113267
10.3390/app12020717
10.1016/j.egypro.2019.01.034
10.1007/s42108-021-00113-9
10.1016/j.matcom.2020.05.010
10.1016/j.enconman.2018.07.070
10.1016/j.enconman.2021.113960
10.1049/iet-gtd.2018.6687
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.038564
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 6393
ExternalDocumentID 10_32604_cmc_2023_038564
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-fbe73f70730d070e4eedebe54eae9d0f216cf71135c80e2a8bee3be7bd0a681b3
IEDL.DBID BENPR
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991024400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:16:51 EDT 2025
Sat Nov 29 03:13:30 EST 2025
Tue Nov 18 21:22:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-fbe73f70730d070e4eedebe54eae9d0f216cf71135c80e2a8bee3be7bd0a681b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199835256?pq-origsite=%requestingapplication%
PQID 3199835256
PQPubID 2048737
PageCount 19
ParticipantIDs proquest_journals_3199835256
crossref_citationtrail_10_32604_cmc_2023_038564
crossref_primary_10_32604_cmc_2023_038564
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Suwal (ref4) 2020; 158
Alsharif (ref26) 2019; 11
Rani (ref33) 2018; 13
ref54
Ghimire (ref20) 2019; 253
Djaafari (ref27) 2022; 8
Rai (ref15) 2022; 252
Lotfinejad (ref36) 2018; 11
Gong (ref49) 2019; 12
Kuriqi (ref2) 2020; 223
Kuriqi (ref3) 2019; 256
Suyono (ref41) 2020
Cho (ref48) 2014
Moon (ref40) 2021
Alizamir (ref23) 2020; 197
Zhou (ref30) 2021; 235
ref5
Abayomi-Alli (ref24) 2019
Yang (ref16) 2019; 16
Khalil (ref10) 2022; 115
DarvishFalehi (ref7) 2022; 35
Jumin (ref28) 2021; 28
Victoria (ref51) 2021; 12
Sun (ref52) 2018
Zia (ref1) 2018; 222
K.U. (ref22) 2021
Tang (ref47) 2019; 13
Wang (ref37) 2019; 158
Liu (ref25) 2021; 227
Zendehboudi (ref39) 2018; 199
Gangwar (ref38) 2020; 7
Thomadakis (ref45) 2022; 271
Bouktif (ref46) 2018; 11
Alwadei (ref17) 2022; 12
Malka (ref8) 2022; 15
Alo (ref44) 2020; 20
Emmert-Streib (ref13) 2020; 3
Alloghani (ref12) 2020
Mughees (ref56) 2020; 8
Mughees (ref14) 2021; 175
Shah (ref43) 2021; 5
Shihabudheen (ref34) 2018
Falehi (ref6) 2020; 130
Hamdia (ref11) 2021; 33
Amellas (ref31) 2020; 18
Altan (ref19) 2021; 100
Syed (ref35) 2018; 33
Hu (ref21) 2018; 173
Kumari (ref29) 2021; 318
Andreas (ref55) 2022
Kiliccote (ref9) 2019
Palomino (ref42) 2020; 13
Hwang (ref50) 2019; 155
Zhang (ref32) 2018; 6
Di Piazza (ref18) 2021; 184
Dubey (ref53) 2022; 503
References_xml – start-page: 1724
  year: 2014
  ident: ref48
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 16
  start-page: 6892
  year: 2019
  ident: ref16
  article-title: Semisupervised multilabel deep learning based nonintrusive load monitoring in smart grids
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2955470
– volume: 197
  start-page: 117239
  year: 2020
  ident: ref23
  article-title: A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117239
– volume: 8
  start-page: 15548
  year: 2022
  ident: ref27
  article-title: Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.10.402
– start-page: 425
  year: 2019
  ident: ref9
  article-title: Characterization of demand response in the commercial, industrial, and residential sectors in the United States
  publication-title: Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge
  doi: 10.1002/9781119508311.ch25
– ident: ref5
– volume: 11
  start-page: 1636
  year: 2018
  ident: ref46
  article-title: Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches
  publication-title: Energies
  doi: 10.3390/en11071636
– start-page: 1
  year: 2018
  ident: ref34
  article-title: Wind speed and solar irradiance prediction using advanced neuro-fuzzy inference system
– volume: 28
  start-page: 26571
  year: 2021
  ident: ref28
  article-title: Solar radiation prediction using boosted decision tree regression model: A case study in Malaysia
  publication-title: Environmental Science and Pollution Research
  doi: 33484461
– volume: 222
  start-page: 1033
  year: 2018
  ident: ref1
  article-title: Microgrids energy management systems: A critical review on methods, solutions, and prospects
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.04.103
– start-page: 1
  year: 2018
  ident: ref52
  article-title: An experimental study on hyper-parameter optimization for stacked auto-encoders
– volume: 7
  start-page: 1
  year: 2020
  ident: ref38
  article-title: Comparative analysis of wind speed forecasting using LSTM and SVM
  publication-title: EAI Endorsed Transactions on Scalable Information Systems
– start-page: 131
  year: 2020
  ident: ref41
  article-title: Forecasting of wind speed in Malang City of Indonesia using adaptive neuro-fuzzy inference system and autoregressive integrated moving average methods
– volume: 253
  start-page: 113541
  year: 2019
  ident: ref20
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113541
– year: 2022
  ident: ref55
  article-title: NREL Solar radiation research laboratory (SRRL): Baseline measurement system (BMS); Golden, Colorado (Data); NREL Report No. DA-5500-56488
  doi: 10.5439/1052221
– volume: 155
  start-page: 19
  year: 2019
  ident: ref50
  article-title: A novel time series based Seq2Seq model for temperature prediction in firing furnace process
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.08.007
– volume: 3
  start-page: 4
  year: 2020
  ident: ref13
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Frontiers in Artificial Intelligence
  doi: 33733124
– volume: 20
  start-page: 6300
  year: 2020
  ident: ref44
  article-title: Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system
  publication-title: Sensors
  doi: 33167424
– volume: 256
  start-page: 113980
  year: 2019
  ident: ref3
  article-title: Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113980
– volume: 33
  start-page: 663
  year: 2018
  ident: ref35
  article-title: Short term solar insolation prediction: P-ELM approach
  publication-title: International Journal of Parallel, Emergent and Distributed Systems
  doi: 10.1080/17445760.2017.1404601
– volume: 33
  start-page: 1923
  year: 2021
  ident: ref11
  article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05035-x
– volume: 115
  start-page: 105287
  year: 2022
  ident: ref10
  article-title: Machine learning, deep learning and statistical analysis for forecasting building energy consumption—A systematic review
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105287
– ident: ref54
– volume: 175
  start-page: 114844
  year: 2021
  ident: ref14
  article-title: Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114844
– start-page: 1
  year: 2021
  ident: ref22
  article-title: EEMD-based wind speed forecasting system using bidirectional LSTM networks
– volume: 12
  start-page: 217
  year: 2021
  ident: ref51
  article-title: Automatic tuning of hyperparameters using Bayesian optimization
  publication-title: Evolving Systems
  doi: 10.1007/s12530-020-09345-2
– volume: 12
  start-page: 3199
  year: 2019
  ident: ref49
  article-title: Research on short-term load prediction based on Seq2seq model
  publication-title: Energies
  doi: 10.3390/en12163199
– start-page: 1
  year: 2021
  ident: ref40
  article-title: A comparative analysis of tree-based models for day-ahead solar irradiance forecasting
– volume: 11
  start-page: 1188
  year: 2018
  ident: ref36
  article-title: A comparative assessment of predicting daily solar radiation using bat neural network (BNN), generalized regression neural network (GRNN), and neuro-fuzzy (NF) system: A case study
  publication-title: Energies
  doi: 10.3390/en11051188
– volume: 100
  start-page: 106996
  year: 2021
  ident: ref19
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106996
– start-page: 82
  year: 2019
  ident: ref24
  article-title: Long short-term memory model for time series prediction and forecast of solar radiation and other weather parameters
– volume: 18
  start-page: 150
  year: 2020
  ident: ref31
  article-title: Short-term wind speed prediction based on MLP and NARX networks models
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v18.i1.pp150-157
– volume: 318
  start-page: 128566
  year: 2021
  ident: ref29
  article-title: Deep learning models for solar irradiance forecasting: A comprehensive review
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.128566
– volume: 158
  start-page: 453
  year: 2020
  ident: ref4
  article-title: Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.05.161
– volume: 130
  start-page: 109407
  year: 2020
  ident: ref6
  article-title: An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities
  publication-title: Chaos Solitons & Fractals
  doi: 10.1016/j.chaos.2019.109407
– volume: 227
  start-page: 120455
  year: 2021
  ident: ref25
  article-title: Impact of COVID-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with bidirectional long short term memory
  publication-title: Energy
  doi: 36568128
– volume: 271
  start-page: 108201
  year: 2022
  ident: ref45
  article-title: De-noising drift chambers in CLAS12 using convolutional auto encoders
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2021.108201
– volume: 8
  start-page: 116704
  year: 2020
  ident: ref56
  article-title: Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004025
– volume: 199
  start-page: 272
  year: 2018
  ident: ref39
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 503
  start-page: 92
  year: 2022
  ident: ref53
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.111
– volume: 13
  start-page: 200
  year: 2020
  ident: ref42
  article-title: Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean coast
  publication-title: Journal of Engineering Science and Technology Review
  doi: 10.25103/jestr.133.22
– volume: 6
  start-page: 53168
  year: 2018
  ident: ref32
  article-title: Wind speed prediction of IPSO-BP neural network based on lorenz disturbance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869981
– volume: 11
  start-page: 240
  year: 2019
  ident: ref26
  article-title: Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea
  publication-title: Symmetry
  doi: 10.3390/sym11020240
– start-page: 3
  year: 2020
  ident: ref12
  publication-title: Supervised and Unsupervised Learning for Data Science
  doi: 10.1007/978-3-030-22475-2_1
– volume: 15
  start-page: 4032
  year: 2022
  ident: ref8
  article-title: Energy storage benefits assessment using multiple-choice criteria: The case of Drini River Cascade, Albania
  publication-title: Energies
  doi: 10.3390/en15114032
– volume: 13
  start-page: e0196871
  year: 2018
  ident: ref33
  article-title: Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer
  publication-title: PloS One
  doi: 10.1371/journal.pone.0196871
– volume: 35
  start-page: e2963
  year: 2022
  ident: ref7
  article-title: An optimal second-order sliding mode based inter-area oscillation suppressor using chaotic whale optimization algorithm for doubly fed induction generator
  publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
  doi: 10.1002/jnm.2963
– volume: 252
  start-page: 168515
  year: 2022
  ident: ref15
  article-title: A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168515
– volume: 223
  start-page: 113267
  year: 2020
  ident: ref2
  article-title: Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic-ecohydraulic approach
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.113267
– volume: 12
  start-page: 717
  year: 2022
  ident: ref17
  article-title: Prediction of solar irradiance over the Arabian Peninsula: Satellite data, radiative transfer model, and machine learning integration approach
  publication-title: Applied Sciences
  doi: 10.3390/app12020717
– volume: 158
  start-page: 49
  year: 2019
  ident: ref37
  article-title: Application of DBN for estimating daily solar radiation on horizontal surfaces in Lhasa, China
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.034
– volume: 5
  start-page: 219
  year: 2021
  ident: ref43
  article-title: Prediction and estimation of solar radiation using artificial neural network (ANN) and fuzzy system: A comprehensive review
  publication-title: International Journal of Energy and Water Resources
  doi: 10.1007/s42108-021-00113-9
– volume: 184
  start-page: 294
  year: 2021
  ident: ref18
  article-title: An artificial neural network-based forecasting model of energy-related time series for electrical grid management
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2020.05.010
– volume: 173
  start-page: 123
  year: 2018
  ident: ref21
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.07.070
– volume: 235
  start-page: 113960
  year: 2021
  ident: ref30
  article-title: A review on global solar radiation prediction with machine learning models in a comprehensive perspective
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2021.113960
– volume: 13
  start-page: 3847
  year: 2019
  ident: ref47
  article-title: Short-term power load forecasting based on multi-layer bidirectional recurrent neural network
  publication-title: IET Generation, Transmission and Distribution
  doi: 10.1049/iet-gtd.2018.6687
SSID ssj0036390
Score 2.352415
Snippet Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 6375
SubjectTerms Algorithms
Alternative energy sources
Distributed generation
Emissions
Energy management systems
Forecasting
Irradiance
Irradiation
Matlab
Optimization
Prediction models
Solar energy
Solar radiation
Wind speed
Title Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed
URI https://www.proquest.com/docview/3199835256
Volume 75
WOSCitedRecordID wos000991024400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcuBCWUXZ5AMXDqZN7Cw9IcoiKpUqIiDKKXJsR0KCJrQp389M4oB64YIUKZFiW1GePfPGyxtCzpQ2EN54DuO-1EykUoId7EuGyeO0n8EVVAeFR8F4HE4m_chOuM3ttsrGJlaGWucK58i7HA-DoXanf1l8MswahaurNoXGKmmhUhn089bgdhw9NraYg_-tjkR6wmcueLN6oRIoS0901QdKGLr8AhfHfLHsmJbtcuVs7tr__cwtsmlpJr2q-8U2WTHTHdJuUjhQO6J3yfvgjY3ipwc2AG-m6Y0xBQX-CUNb09jusmZlzppnerUoc9S-1NAK8F2KqT2VnOPmaRpjmEyHsxnqHSDgVE41fYGon8YFeMk98nx3-3R9z2wCBqa4w0uWpSbgWYBWQINpMAKKAuieMNL0dS9zHV9lgeNwT4U948owNYZDnVT3pA98mO-TtWk-NQeEZp4JPe2gYJkQQBLD0CgN4UoG_NRNhemQbvP3E2XVyTFJxnsCUUqFVwJ4JYhXUuPVIec_NYpameOPsscNWokdo_PkF6rDv18fkQ1sq554OSZr5WxhTsi6-irf5rNT2-XgHg0fotdv5tnhHg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1BQKKX0haqQtPiQ3vgYJJdez9yqCooRUQkUaQEAafFa89KkWgSkk2r_qn-xs7sRysu3DggrVYr7dqS108zb2zPG4BP1iGFN4EnVWic1KkxZAc7RnLxOBdmdEVFonAvGgzi6-vOcA3-1LkwfKyytomFoXYzy2vkLcXJYKzdGX6d30uuGsW7q3UJjRIWF_j7F4Vsyy_dU5rfz75_9n387VxWVQWkVZ7KZZZipLKIoe0I76jJS9BIAo0GO66d-V5os8jzVGDjNvomThEVtUld24RE8hT1uw4bmsHegI1htz-8qW2_In9fpGAGOpQ-ec9yY5QoUlu37A-WTPTVEW_GhfqhI3zoBwrndrb93H7LK3hZ0WhxXOL-Nazh9A1s1yUqRGWxduDuZCJ7o3FfnpC3duIUcS6IX5PpcmJUnSKX-UzWz-J4lc9Y29NRL8TnBZcutWbJh8PFiJcBRHexYD0HBrQwUyeuJnQbzWkgu3D5JGN-C43pbIrvQGQBxoHzWJBNayLBcYzWUTiWEf_2U4170KpnO7GV-joXAblLKAor8JEQPhLGR1LiYw8O_7WYl8ojj3zbrNGRVDZomfyHxv7jrw9g63zc7yW97uDiPbzgfstFpiY08sUKP8Cm_ZlPlouPFdwF3D41lP4CPjI__g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-LSTM-Based+Deep+Stacked+Sequence-to-Sequence+Autoencoder+for+Forecasting+Solar+Irradiation+and+Wind+Speed&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Mughees%2C+Neelam&rft.au=Hussain+Jaffery%2C+Mujtaba&rft.au=Mughees%2C+Abdullah&rft.au=Mughees%2C+Anam&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=3&rft.spage=6375&rft.epage=6393&rft_id=info:doi/10.32604%2Fcmc.2023.038564&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_038564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon