Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy manageme...
Gespeichert in:
| Veröffentlicht in: | Computers, materials & continua Jg. 75; H. 3; S. 6375 - 6393 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Henderson
Tech Science Press
2023
|
| Schlagworte: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB. To create a deep stacked S2SAE prediction model, a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence, extract its features, and then reconstruct it to produce the forecasts. Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm. Moreover, the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep, and shallow stacked S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, gated recurrent unit-based deep stacked S2SAE model, and Bi-LSTM-based shallow stacked S2SAE model. All these models were also optimized and modeled in MATLAB. The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%, which evidenced the high reliability of the proposed forecasting. |
|---|---|
| AbstractList | Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB. To create a deep stacked S2SAE prediction model, a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence, extract its features, and then reconstruct it to produce the forecasts. Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm. Moreover, the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep, and shallow stacked S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, gated recurrent unit-based deep stacked S2SAE model, and Bi-LSTM-based shallow stacked S2SAE model. All these models were also optimized and modeled in MATLAB. The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%, which evidenced the high reliability of the proposed forecasting. |
| Author | Mughees, Anam Mughees, Abdullah Ejsmont, Krzysztof Mughees, Neelam Hussain Jaffery, Mujtaba |
| Author_xml | – sequence: 1 givenname: Neelam surname: Mughees fullname: Mughees, Neelam – sequence: 2 givenname: Mujtaba surname: Hussain Jaffery fullname: Hussain Jaffery, Mujtaba – sequence: 3 givenname: Abdullah surname: Mughees fullname: Mughees, Abdullah – sequence: 4 givenname: Anam surname: Mughees fullname: Mughees, Anam – sequence: 5 givenname: Krzysztof surname: Ejsmont fullname: Ejsmont, Krzysztof |
| BookMark | eNp1kL1PwzAQxS0EEm1hZ7TEnOKPxEnGtlCoVMSQIkbLcS7IJY2D7Q7895gWJITEcvdOut_d0xuj0972gNAVJVPOBElv9E5PGWF8SniRifQEjWiWioQxJk5_6XM09n5LCBe8JCPUzU2yrjaPyVx5aPAtwICroPRbHCp430OvIQk2-dF4tg82CtuAw611eGkdaOWD6V9xZTvl8Mo51RgVjO2x6hv8YmKpBoDmAp21qvNw-d0n6Hl5t1k8JOun-9Vitk40pzwkbQ05b3OSc9KQnEAaUaghS0FB2ZCWUaHbnFKe6YIAU0UNwCNTN0SJgtZ8gq6Pdwdno20f5NbuXR9fSk7LsuAZy0TcEsct7az3DlqpTTjYDk6ZTlIiD8nKmKz8SlYek40g-QMOzuyU-_gf-QQNKX53 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126624 crossref_primary_10_1109_ACCESS_2024_3521318 crossref_primary_10_1016_j_renene_2024_122053 crossref_primary_10_1109_ACCESS_2025_3591091 crossref_primary_10_1093_ce_zkad046 crossref_primary_10_1002_asjc_3758 crossref_primary_10_1186_s42162_025_00571_z |
| Cites_doi | 10.1109/TII.2019.2955470 10.1016/j.energy.2020.117239 10.1016/j.egyr.2022.10.402 10.1002/9781119508311.ch25 10.3390/en11071636 33484461 10.1016/j.apenergy.2018.04.103 10.1016/j.apenergy.2019.113541 10.5439/1052221 10.1016/j.procs.2019.08.007 33733124 33167424 10.1016/j.apenergy.2019.113980 10.1080/17445760.2017.1404601 10.1007/s00521-020-05035-x 10.1016/j.engappai.2022.105287 10.1016/j.eswa.2021.114844 10.1007/s12530-020-09345-2 10.3390/en12163199 10.3390/en11051188 10.1016/j.asoc.2020.106996 10.11591/ijeecs.v18.i1.pp150-157 10.1016/j.jclepro.2021.128566 10.1016/j.renene.2020.05.161 10.1016/j.chaos.2019.109407 36568128 10.1016/j.cpc.2021.108201 10.1109/ACCESS.2020.3004025 10.1016/j.jclepro.2018.07.164 10.1016/j.neucom.2022.06.111 10.25103/jestr.133.22 10.1109/ACCESS.2018.2869981 10.3390/sym11020240 10.1007/978-3-030-22475-2_1 10.3390/en15114032 10.1371/journal.pone.0196871 10.1002/jnm.2963 10.1016/j.ijleo.2021.168515 10.1016/j.enconman.2020.113267 10.3390/app12020717 10.1016/j.egypro.2019.01.034 10.1007/s42108-021-00113-9 10.1016/j.matcom.2020.05.010 10.1016/j.enconman.2018.07.070 10.1016/j.enconman.2021.113960 10.1049/iet-gtd.2018.6687 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2023.038564 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 6393 |
| ExternalDocumentID | 10_32604_cmc_2023_038564 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC COVID DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-fbe73f70730d070e4eedebe54eae9d0f216cf71135c80e2a8bee3be7bd0a681b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991024400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Mon Jun 30 11:16:51 EDT 2025 Sat Nov 29 03:13:30 EST 2025 Tue Nov 18 21:22:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-fbe73f70730d070e4eedebe54eae9d0f216cf71135c80e2a8bee3be7bd0a681b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3199835256?pq-origsite=%requestingapplication% |
| PQID | 3199835256 |
| PQPubID | 2048737 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3199835256 crossref_citationtrail_10_32604_cmc_2023_038564 crossref_primary_10_32604_cmc_2023_038564 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Suwal (ref4) 2020; 158 Alsharif (ref26) 2019; 11 Rani (ref33) 2018; 13 ref54 Ghimire (ref20) 2019; 253 Djaafari (ref27) 2022; 8 Rai (ref15) 2022; 252 Lotfinejad (ref36) 2018; 11 Gong (ref49) 2019; 12 Kuriqi (ref2) 2020; 223 Kuriqi (ref3) 2019; 256 Suyono (ref41) 2020 Cho (ref48) 2014 Moon (ref40) 2021 Alizamir (ref23) 2020; 197 Zhou (ref30) 2021; 235 ref5 Abayomi-Alli (ref24) 2019 Yang (ref16) 2019; 16 Khalil (ref10) 2022; 115 DarvishFalehi (ref7) 2022; 35 Jumin (ref28) 2021; 28 Victoria (ref51) 2021; 12 Sun (ref52) 2018 Zia (ref1) 2018; 222 K.U. (ref22) 2021 Tang (ref47) 2019; 13 Wang (ref37) 2019; 158 Liu (ref25) 2021; 227 Zendehboudi (ref39) 2018; 199 Gangwar (ref38) 2020; 7 Thomadakis (ref45) 2022; 271 Bouktif (ref46) 2018; 11 Alwadei (ref17) 2022; 12 Malka (ref8) 2022; 15 Alo (ref44) 2020; 20 Emmert-Streib (ref13) 2020; 3 Alloghani (ref12) 2020 Mughees (ref56) 2020; 8 Mughees (ref14) 2021; 175 Shah (ref43) 2021; 5 Shihabudheen (ref34) 2018 Falehi (ref6) 2020; 130 Hamdia (ref11) 2021; 33 Amellas (ref31) 2020; 18 Altan (ref19) 2021; 100 Syed (ref35) 2018; 33 Hu (ref21) 2018; 173 Kumari (ref29) 2021; 318 Andreas (ref55) 2022 Kiliccote (ref9) 2019 Palomino (ref42) 2020; 13 Hwang (ref50) 2019; 155 Zhang (ref32) 2018; 6 Di Piazza (ref18) 2021; 184 Dubey (ref53) 2022; 503 |
| References_xml | – start-page: 1724 year: 2014 ident: ref48 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume: 16 start-page: 6892 year: 2019 ident: ref16 article-title: Semisupervised multilabel deep learning based nonintrusive load monitoring in smart grids publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2955470 – volume: 197 start-page: 117239 year: 2020 ident: ref23 article-title: A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions publication-title: Energy doi: 10.1016/j.energy.2020.117239 – volume: 8 start-page: 15548 year: 2022 ident: ref27 article-title: Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions publication-title: Energy Reports doi: 10.1016/j.egyr.2022.10.402 – start-page: 425 year: 2019 ident: ref9 article-title: Characterization of demand response in the commercial, industrial, and residential sectors in the United States publication-title: Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge doi: 10.1002/9781119508311.ch25 – ident: ref5 – volume: 11 start-page: 1636 year: 2018 ident: ref46 article-title: Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches publication-title: Energies doi: 10.3390/en11071636 – start-page: 1 year: 2018 ident: ref34 article-title: Wind speed and solar irradiance prediction using advanced neuro-fuzzy inference system – volume: 28 start-page: 26571 year: 2021 ident: ref28 article-title: Solar radiation prediction using boosted decision tree regression model: A case study in Malaysia publication-title: Environmental Science and Pollution Research doi: 33484461 – volume: 222 start-page: 1033 year: 2018 ident: ref1 article-title: Microgrids energy management systems: A critical review on methods, solutions, and prospects publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.04.103 – start-page: 1 year: 2018 ident: ref52 article-title: An experimental study on hyper-parameter optimization for stacked auto-encoders – volume: 7 start-page: 1 year: 2020 ident: ref38 article-title: Comparative analysis of wind speed forecasting using LSTM and SVM publication-title: EAI Endorsed Transactions on Scalable Information Systems – start-page: 131 year: 2020 ident: ref41 article-title: Forecasting of wind speed in Malang City of Indonesia using adaptive neuro-fuzzy inference system and autoregressive integrated moving average methods – volume: 253 start-page: 113541 year: 2019 ident: ref20 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113541 – year: 2022 ident: ref55 article-title: NREL Solar radiation research laboratory (SRRL): Baseline measurement system (BMS); Golden, Colorado (Data); NREL Report No. DA-5500-56488 doi: 10.5439/1052221 – volume: 155 start-page: 19 year: 2019 ident: ref50 article-title: A novel time series based Seq2Seq model for temperature prediction in firing furnace process publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.08.007 – volume: 3 start-page: 4 year: 2020 ident: ref13 article-title: An introductory review of deep learning for prediction models with big data publication-title: Frontiers in Artificial Intelligence doi: 33733124 – volume: 20 start-page: 6300 year: 2020 ident: ref44 article-title: Smartphone motion sensor-based complex human activity identification using deep stacked autoencoder algorithm for enhanced smart healthcare system publication-title: Sensors doi: 33167424 – volume: 256 start-page: 113980 year: 2019 ident: ref3 article-title: Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113980 – volume: 33 start-page: 663 year: 2018 ident: ref35 article-title: Short term solar insolation prediction: P-ELM approach publication-title: International Journal of Parallel, Emergent and Distributed Systems doi: 10.1080/17445760.2017.1404601 – volume: 33 start-page: 1923 year: 2021 ident: ref11 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05035-x – volume: 115 start-page: 105287 year: 2022 ident: ref10 article-title: Machine learning, deep learning and statistical analysis for forecasting building energy consumption—A systematic review publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105287 – ident: ref54 – volume: 175 start-page: 114844 year: 2021 ident: ref14 article-title: Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114844 – start-page: 1 year: 2021 ident: ref22 article-title: EEMD-based wind speed forecasting system using bidirectional LSTM networks – volume: 12 start-page: 217 year: 2021 ident: ref51 article-title: Automatic tuning of hyperparameters using Bayesian optimization publication-title: Evolving Systems doi: 10.1007/s12530-020-09345-2 – volume: 12 start-page: 3199 year: 2019 ident: ref49 article-title: Research on short-term load prediction based on Seq2seq model publication-title: Energies doi: 10.3390/en12163199 – start-page: 1 year: 2021 ident: ref40 article-title: A comparative analysis of tree-based models for day-ahead solar irradiance forecasting – volume: 11 start-page: 1188 year: 2018 ident: ref36 article-title: A comparative assessment of predicting daily solar radiation using bat neural network (BNN), generalized regression neural network (GRNN), and neuro-fuzzy (NF) system: A case study publication-title: Energies doi: 10.3390/en11051188 – volume: 100 start-page: 106996 year: 2021 ident: ref19 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106996 – start-page: 82 year: 2019 ident: ref24 article-title: Long short-term memory model for time series prediction and forecast of solar radiation and other weather parameters – volume: 18 start-page: 150 year: 2020 ident: ref31 article-title: Short-term wind speed prediction based on MLP and NARX networks models publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v18.i1.pp150-157 – volume: 318 start-page: 128566 year: 2021 ident: ref29 article-title: Deep learning models for solar irradiance forecasting: A comprehensive review publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.128566 – volume: 158 start-page: 453 year: 2020 ident: ref4 article-title: Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes publication-title: Renewable Energy doi: 10.1016/j.renene.2020.05.161 – volume: 130 start-page: 109407 year: 2020 ident: ref6 article-title: An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities publication-title: Chaos Solitons & Fractals doi: 10.1016/j.chaos.2019.109407 – volume: 227 start-page: 120455 year: 2021 ident: ref25 article-title: Impact of COVID-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with bidirectional long short term memory publication-title: Energy doi: 36568128 – volume: 271 start-page: 108201 year: 2022 ident: ref45 article-title: De-noising drift chambers in CLAS12 using convolutional auto encoders publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2021.108201 – volume: 8 start-page: 116704 year: 2020 ident: ref56 article-title: Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004025 – volume: 199 start-page: 272 year: 2018 ident: ref39 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.07.164 – volume: 503 start-page: 92 year: 2022 ident: ref53 article-title: Activation functions in deep learning: A comprehensive survey and benchmark publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.111 – volume: 13 start-page: 200 year: 2020 ident: ref42 article-title: Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean coast publication-title: Journal of Engineering Science and Technology Review doi: 10.25103/jestr.133.22 – volume: 6 start-page: 53168 year: 2018 ident: ref32 article-title: Wind speed prediction of IPSO-BP neural network based on lorenz disturbance publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869981 – volume: 11 start-page: 240 year: 2019 ident: ref26 article-title: Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea publication-title: Symmetry doi: 10.3390/sym11020240 – start-page: 3 year: 2020 ident: ref12 publication-title: Supervised and Unsupervised Learning for Data Science doi: 10.1007/978-3-030-22475-2_1 – volume: 15 start-page: 4032 year: 2022 ident: ref8 article-title: Energy storage benefits assessment using multiple-choice criteria: The case of Drini River Cascade, Albania publication-title: Energies doi: 10.3390/en15114032 – volume: 13 start-page: e0196871 year: 2018 ident: ref33 article-title: Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer publication-title: PloS One doi: 10.1371/journal.pone.0196871 – volume: 35 start-page: e2963 year: 2022 ident: ref7 article-title: An optimal second-order sliding mode based inter-area oscillation suppressor using chaotic whale optimization algorithm for doubly fed induction generator publication-title: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields doi: 10.1002/jnm.2963 – volume: 252 start-page: 168515 year: 2022 ident: ref15 article-title: A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short term solar power forecasting publication-title: Optik doi: 10.1016/j.ijleo.2021.168515 – volume: 223 start-page: 113267 year: 2020 ident: ref2 article-title: Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic-ecohydraulic approach publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2020.113267 – volume: 12 start-page: 717 year: 2022 ident: ref17 article-title: Prediction of solar irradiance over the Arabian Peninsula: Satellite data, radiative transfer model, and machine learning integration approach publication-title: Applied Sciences doi: 10.3390/app12020717 – volume: 158 start-page: 49 year: 2019 ident: ref37 article-title: Application of DBN for estimating daily solar radiation on horizontal surfaces in Lhasa, China publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.034 – volume: 5 start-page: 219 year: 2021 ident: ref43 article-title: Prediction and estimation of solar radiation using artificial neural network (ANN) and fuzzy system: A comprehensive review publication-title: International Journal of Energy and Water Resources doi: 10.1007/s42108-021-00113-9 – volume: 184 start-page: 294 year: 2021 ident: ref18 article-title: An artificial neural network-based forecasting model of energy-related time series for electrical grid management publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2020.05.010 – volume: 173 start-page: 123 year: 2018 ident: ref21 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.07.070 – volume: 235 start-page: 113960 year: 2021 ident: ref30 article-title: A review on global solar radiation prediction with machine learning models in a comprehensive perspective publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2021.113960 – volume: 13 start-page: 3847 year: 2019 ident: ref47 article-title: Short-term power load forecasting based on multi-layer bidirectional recurrent neural network publication-title: IET Generation, Transmission and Distribution doi: 10.1049/iet-gtd.2018.6687 |
| SSID | ssj0036390 |
| Score | 2.352415 |
| Snippet | Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 6375 |
| SubjectTerms | Algorithms Alternative energy sources Distributed generation Emissions Energy management systems Forecasting Irradiance Irradiation Matlab Optimization Prediction models Solar energy Solar radiation Wind speed |
| Title | Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed |
| URI | https://www.proquest.com/docview/3199835256 |
| Volume | 75 |
| WOSCitedRecordID | wos000991024400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcuBCWUXZ5AMXDqZN7Cw9IcoiKpUqIiDKKXJsR0KCJrQp389M4oB64YIUKZFiW1GePfPGyxtCzpQ2EN54DuO-1EykUoId7EuGyeO0n8EVVAeFR8F4HE4m_chOuM3ttsrGJlaGWucK58i7HA-DoXanf1l8MswahaurNoXGKmmhUhn089bgdhw9NraYg_-tjkR6wmcueLN6oRIoS0901QdKGLr8AhfHfLHsmJbtcuVs7tr__cwtsmlpJr2q-8U2WTHTHdJuUjhQO6J3yfvgjY3ipwc2AG-m6Y0xBQX-CUNb09jusmZlzppnerUoc9S-1NAK8F2KqT2VnOPmaRpjmEyHsxnqHSDgVE41fYGon8YFeMk98nx3-3R9z2wCBqa4w0uWpSbgWYBWQINpMAKKAuieMNL0dS9zHV9lgeNwT4U948owNYZDnVT3pA98mO-TtWk-NQeEZp4JPe2gYJkQQBLD0CgN4UoG_NRNhemQbvP3E2XVyTFJxnsCUUqFVwJ4JYhXUuPVIec_NYpameOPsscNWokdo_PkF6rDv18fkQ1sq554OSZr5WxhTsi6-irf5rNT2-XgHg0fotdv5tnhHg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1BQKKX0haqQtPiQ3vgYJJdez9yqCooRUQkUaQEAafFa89KkWgSkk2r_qn-xs7sRysu3DggrVYr7dqS108zb2zPG4BP1iGFN4EnVWic1KkxZAc7RnLxOBdmdEVFonAvGgzi6-vOcA3-1LkwfKyytomFoXYzy2vkLcXJYKzdGX6d30uuGsW7q3UJjRIWF_j7F4Vsyy_dU5rfz75_9n387VxWVQWkVZ7KZZZipLKIoe0I76jJS9BIAo0GO66d-V5os8jzVGDjNvomThEVtUld24RE8hT1uw4bmsHegI1htz-8qW2_In9fpGAGOpQ-ec9yY5QoUlu37A-WTPTVEW_GhfqhI3zoBwrndrb93H7LK3hZ0WhxXOL-Nazh9A1s1yUqRGWxduDuZCJ7o3FfnpC3duIUcS6IX5PpcmJUnSKX-UzWz-J4lc9Y29NRL8TnBZcutWbJh8PFiJcBRHexYD0HBrQwUyeuJnQbzWkgu3D5JGN-C43pbIrvQGQBxoHzWJBNayLBcYzWUTiWEf_2U4170KpnO7GV-joXAblLKAor8JEQPhLGR1LiYw8O_7WYl8ojj3zbrNGRVDZomfyHxv7jrw9g63zc7yW97uDiPbzgfstFpiY08sUKP8Cm_ZlPlouPFdwF3D41lP4CPjI__g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-LSTM-Based+Deep+Stacked+Sequence-to-Sequence+Autoencoder+for+Forecasting+Solar+Irradiation+and+Wind+Speed&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Mughees%2C+Neelam&rft.au=Hussain+Jaffery%2C+Mujtaba&rft.au=Mughees%2C+Abdullah&rft.au=Mughees%2C+Anam&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=3&rft.spage=6375&rft.epage=6393&rft_id=info:doi/10.32604%2Fcmc.2023.038564&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_038564 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |