Clustering with obstacles for Geographical Data Mining

Clustering algorithms typically use the Euclidean distance. However, spatial proximity is dependent on obstacles, caused by related information in other layers of the spatial database. We present a clustering algorithm suitable for large spatial databases with obstacles. The algorithm is free of use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing Jg. 59; H. 1; S. 21 - 34
Hauptverfasser: Estivill-Castro, Vladimir, Lee, Ickjai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2004
Schlagworte:
ISSN:0924-2716, 1872-8235
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clustering algorithms typically use the Euclidean distance. However, spatial proximity is dependent on obstacles, caused by related information in other layers of the spatial database. We present a clustering algorithm suitable for large spatial databases with obstacles. The algorithm is free of user-supplied arguments and incorporates global and local variations. The algorithm detects clusters in complex scenarios and successfully supports association analysis between layers. All this occurs within O( n log n+[ s+ t] log n) expected time, where n is the number of points, s is the number of line segments that determine the obstacles and t is the number of Delaunay edges intersecting the obstacles.
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2003.12.003