Detecting Shifts in Public Discourse from Offline to Online Using Deep Learning

Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 14; číslo 20; s. 3987
Hlavní autoři: Abubakar Ibrahim, Adamu, Khan, Fazeel Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 11.10.2025
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to online, necessitate rigorous validation. That is why this study proposed the application of deep learning techniques to the boundaries and deviation of accuracies in health-related topics by analyzing health-related tweets from major news outlets such as BBC, CNN, CBC, and Reuters. The study developed LSTM and CNN classifiers to categorize content pertinent to the discourse following the formal deep learning process and employed a sequence of VAEs to verify the learnability and stability of the classifiers. The LSTM demonstrated superior performance compared to CNN, attaining validation accuracies of 98.4% on BBC and CNN, 97.8% on CBC, and 97.3% on Reuters. The optimal configuration of our LSTM achieved a precision of 98.69%, a recall of 98.20%, and an F1-score of 97.90% and recorded the lowest false positive rate, at 1.30%. This provided us with the optimal overall equilibrium for operational oversight. The VAE runs demonstrated that the model exhibited stability and the ability to generalize across different sources, achieving approximately 99.6% for Reuters and around 98.4% for BBC. The findings confirm that deep learning models are capable of reliably tracking the online migration of health discourse driven by news media. This provides a solid foundation for near-real-time monitoring of public engagement and for informing sustainable healthcare recommendation systems.
AbstractList Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to online, necessitate rigorous validation. That is why this study proposed the application of deep learning techniques to the boundaries and deviation of accuracies in health-related topics by analyzing health-related tweets from major news outlets such as BBC, CNN, CBC, and Reuters. The study developed LSTM and CNN classifiers to categorize content pertinent to the discourse following the formal deep learning process and employed a sequence of VAEs to verify the learnability and stability of the classifiers. The LSTM demonstrated superior performance compared to CNN, attaining validation accuracies of 98.4% on BBC and CNN, 97.8% on CBC, and 97.3% on Reuters. The optimal configuration of our LSTM achieved a precision of 98.69%, a recall of 98.20%, and an F1-score of 97.90% and recorded the lowest false positive rate, at 1.30%. This provided us with the optimal overall equilibrium for operational oversight. The VAE runs demonstrated that the model exhibited stability and the ability to generalize across different sources, achieving approximately 99.6% for Reuters and around 98.4% for BBC. The findings confirm that deep learning models are capable of reliably tracking the online migration of health discourse driven by news media. This provides a solid foundation for near-real-time monitoring of public engagement and for informing sustainable healthcare recommendation systems.
Audience Academic
Author Khan, Fazeel Ahmed
Abubakar Ibrahim, Adamu
Author_xml – sequence: 1
  givenname: Adamu
  orcidid: 0000-0001-6471-481X
  surname: Abubakar Ibrahim
  fullname: Abubakar Ibrahim, Adamu
– sequence: 2
  givenname: Fazeel Ahmed
  orcidid: 0000-0001-9154-6727
  surname: Khan
  fullname: Khan, Fazeel Ahmed
BookMark eNptUE1PwzAMjdCQGGO_gEskzhv5aJrkOG18SZOKBDtXTeqMTF06ku7AvydjHDhgH_xsvWdb7xqNQh8AoVtK5pxrcg8d2CH2wdtEC0a4VvICjRmReqaZZqM_-ApNU9qRHJpyxckYVSsYstyHLX778G5I2Af8ejSdt3jlk-2PMQF2sd_jyrnOB8BDj6vwgzbppFsBHPAamhhyd4MuXdMlmP7WCdo8Prwvn2fr6ulluVjPLKd8mEELtCkU460BbRQAlY4QVzDaUkVEUZjGyJYII0oppBG6LJ2QpTDcgW2V5BN0d957iP3nEdJQ7_KrIZ-sOSuF0oJIkVnzM2vbdFD74PohNjZnC3tvs43O5_lClayQRBKVBfwssLFPKYKrD9Hvm_hVU1Kf3K7_cZt_A_gfdq4
Cites_doi 10.3390/bdcc8120186
10.1109/TNNLS.2021.3084827
10.3390/su14074113
10.3390/app12083709
10.3390/app14135556
10.1016/j.chb.2020.106568
10.3390/ijerph192416376
10.1016/j.jksuci.2024.102068
10.3390/electronics12061302
10.2196/49724
10.1007/978-3-030-66450-3_1
10.3390/computation7020025
10.1016/j.heliyon.2024.e37760
10.2105/AJPH.2016.303512
10.1038/s41598-025-97778-7
10.1016/j.chaos.2024.115105
10.1029/2023SW003763
10.3390/bdcc6020065
10.2196/21978
10.2196/17187
10.1007/s10844-020-00633-6
10.1016/j.engappai.2024.108510
10.1145/3025453.3025891
10.1016/j.hlpt.2024.100846
10.1097/EDE.0000000000001133
10.2196/16206
10.1093/tbm/ibab148
10.3390/informatics10030065
10.3390/bdcc7020116
10.1016/j.heliyon.2023.e22844
10.2196/38786
10.1016/j.artmed.2024.102900
10.1080/10410236.2023.2170201
10.4018/979-8-3693-1214-8.ch017
10.1186/s12911-024-02600-5
10.1109/ACCESS.2022.3151048
10.1146/annurev-soc-031021-035658
10.1007/978-1-4842-5364-9
10.1109/ACCESS.2024.3425166
10.1111/hir.12216
10.1016/j.ijhydene.2023.03.456
10.1007/s40815-017-0327-9
10.2196/34492
10.1371/journal.pone.0301835
10.1080/01900692.2023.2171432
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics14203987
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2079-9292
ExternalDocumentID A862470708
10_3390_electronics14203987
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-ede1a4823dbe9b8ee17f00f421d180544bab7d05b56757b5966f5765b3fecd873
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601447800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Nov 01 11:23:02 EDT 2025
Tue Nov 11 03:50:49 EST 2025
Sat Nov 29 07:14:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ede1a4823dbe9b8ee17f00f421d180544bab7d05b56757b5966f5765b3fecd873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6471-481X
0000-0001-9154-6727
OpenAccessLink https://www.proquest.com/publiccontent/docview/3265895075?pq-origsite=%requestingapplication%
PQID 3265895075
PQPubID 2032404
ParticipantIDs proquest_journals_3265895075
gale_infotracacademiconefile_A862470708
crossref_primary_10_3390_electronics14203987
PublicationCentury 2000
PublicationDate 2025-10-11
PublicationDateYYYYMMDD 2025-10-11
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-11
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chinnasamy (ref_18) 2023; 9
Wu (ref_25) 2024; 185
Vidal (ref_24) 2022; 10
ref_12
Rodrigues (ref_28) 2024; 13
Lahat (ref_14) 2024; 47
Brahmi (ref_38) 2024; 133
Heydarian (ref_42) 2022; 10
ref_17
ref_16
Karami (ref_40) 2018; 20
Hassan (ref_30) 2024; 36
ref_20
Joshi (ref_13) 2020; 31
ref_27
Nerella (ref_19) 2024; 154
Li (ref_5) 2022; 12
Alam (ref_23) 2024; 10
ref_34
ref_31
Kostkova (ref_7) 2014; 5
Cho (ref_21) 2024; 12
Mavragani (ref_3) 2020; 22
Skunkan (ref_9) 2020; 6
Khanam (ref_39) 2024; 12
ref_37
Zeraatkar (ref_4) 2018; 35
Ruhani (ref_32) 2024; 52
Kbaier (ref_22) 2024; 26
Li (ref_36) 2021; 33
Klimiuk (ref_2) 2024; 78
Tran (ref_15) 2021; 57
Jeong (ref_33) 2024; 22
Khan (ref_35) 2024; 16
(ref_26) 2021; 23
ref_47
Lee (ref_10) 2024; 39
ref_46
ref_45
ref_44
ref_43
ref_41
ref_1
Sinnenberg (ref_29) 2017; 107
ref_49
ref_48
ref_8
Wang (ref_11) 2021; 114
Murthy (ref_6) 2024; 50
References_xml – ident: ref_44
  doi: 10.3390/bdcc8120186
– volume: 33
  start-page: 6999
  year: 2021
  ident: ref_36
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref_43
  doi: 10.3390/su14074113
– ident: ref_48
  doi: 10.3390/app12083709
– ident: ref_31
  doi: 10.3390/app14135556
– volume: 114
  start-page: 106568
  year: 2021
  ident: ref_11
  article-title: Examining risk and crisis communications of government agencies and stakeholders during early-stages of COVID-19 on Twitter
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2020.106568
– ident: ref_46
  doi: 10.3390/ijerph192416376
– volume: 36
  start-page: 102068
  year: 2024
  ident: ref_30
  article-title: RNN-LSTM: From applications to modeling techniques and beyond—Systematic review
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2024.102068
– ident: ref_47
  doi: 10.3390/electronics12061302
– volume: 12
  start-page: e49724
  year: 2024
  ident: ref_21
  article-title: Task-Specific Transformer-Based Language Models in Health Care: Scoping Review
  publication-title: JMIR Med. Inform.
  doi: 10.2196/49724
– ident: ref_16
  doi: 10.1007/978-3-030-66450-3_1
– ident: ref_17
  doi: 10.3390/computation7020025
– volume: 10
  start-page: e37760
  year: 2024
  ident: ref_23
  article-title: Dissecting the infodemic: An in-depth analysis of COVID-19 misinformation detection on X (formerly Twitter) utilizing machine learning and deep learning techniques
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e37760
– volume: 107
  start-page: e1
  year: 2017
  ident: ref_29
  article-title: Twitter as a tool for health research: A systematic review
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2016.303512
– ident: ref_27
  doi: 10.1038/s41598-025-97778-7
– volume: 185
  start-page: 115105
  year: 2024
  ident: ref_25
  article-title: Comparing the accuracy of ANN with transformer models for sentiment analysis of tweets related to COVID-19 Pfizer vaccines
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115105
– volume: 22
  start-page: e2023SW003763
  year: 2024
  ident: ref_33
  article-title: Deep Learning-Based Regional Ionospheric Total Electron Content Prediction—Long Short-Term Memory (LSTM) and Convolutional LSTM Approach
  publication-title: Space Weather
  doi: 10.1029/2023SW003763
– ident: ref_49
  doi: 10.3390/bdcc6020065
– volume: 6
  start-page: e21978
  year: 2020
  ident: ref_9
  article-title: Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modelling study
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/21978
– volume: 23
  start-page: e17187
  year: 2021
  ident: ref_26
  article-title: Prevalence of health misinformation on social media: Systematic review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/17187
– volume: 57
  start-page: 171
  year: 2021
  ident: ref_15
  article-title: Recommender systems in the healthcare domain: State-of-the-art and research issues
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-020-00633-6
– volume: 133
  start-page: 108510
  year: 2024
  ident: ref_38
  article-title: Exploring the role of Convolutional Neural Networks (CNN) in dental radiography segmentation: A comprehensive Systematic Literature Review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108510
– ident: ref_41
– volume: 5
  start-page: 8
  year: 2014
  ident: ref_7
  article-title: # swineflu: The use of twitter as an early warning and risk communication tool in the 2009 swine flu pandemic
  publication-title: ACM Trans. Manag. Inf. Syst. (TMIS)
– ident: ref_12
  doi: 10.1145/3025453.3025891
– volume: 13
  start-page: 100846
  year: 2024
  ident: ref_28
  article-title: The social media infodemic of health-related misinformation and technical solutions
  publication-title: Health Policy Technol.
  doi: 10.1016/j.hlpt.2024.100846
– volume: 31
  start-page: 90
  year: 2020
  ident: ref_13
  article-title: Harnessing tweets for early detection of an acute disease event
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000001133
– volume: 22
  start-page: e16206
  year: 2020
  ident: ref_3
  article-title: Infodemiology and infoveillance: Scoping review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16206
– volume: 12
  start-page: 243
  year: 2022
  ident: ref_5
  article-title: Vaccine hesitancy and behavior change theory-based social media interventions: A systematic review
  publication-title: Transl. Behav. Med.
  doi: 10.1093/tbm/ibab148
– ident: ref_45
  doi: 10.3390/informatics10030065
– ident: ref_8
  doi: 10.3390/bdcc7020116
– volume: 16
  start-page: 5
  year: 2024
  ident: ref_35
  article-title: Machine Learning-based Enhanced Deep Packet Inspection for IP Packet Priority Classification with Differentiated Services Code Point for Advance Network Management
  publication-title: J. Telecommun. Electron. Comput. Eng. (JTEC)
– volume: 9
  start-page: e22844
  year: 2023
  ident: ref_18
  article-title: Health recommendation system using deep learning-based collaborative filtering
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e22844
– volume: 26
  start-page: e38786
  year: 2024
  ident: ref_22
  article-title: Prevalence of Health Misinformation on Social Media—Challenges and Mitigation Before, During, and Beyond the COVID-19 Pandemic: Scoping Literature Review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/38786
– volume: 154
  start-page: 102900
  year: 2024
  ident: ref_19
  article-title: Transformers and large language models in healthcare: A review
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2024.102900
– volume: 39
  start-page: 493
  year: 2024
  ident: ref_10
  article-title: Examining COVID-19 tweet diffusion using an integrated social amplification of risk and issue-attention cycle framework
  publication-title: Health Commun.
  doi: 10.1080/10410236.2023.2170201
– ident: ref_1
  doi: 10.4018/979-8-3693-1214-8.ch017
– ident: ref_20
  doi: 10.1186/s12911-024-02600-5
– volume: 10
  start-page: 19083
  year: 2022
  ident: ref_42
  article-title: MLCM: Multi-label confusion matrix
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151048
– volume: 78
  start-page: 81
  year: 2024
  ident: ref_2
  article-title: What is infodemiology? An overview and its role in public health
  publication-title: Epidemiol. Rev./Przegląd Epidemiol.
– volume: 50
  start-page: 169
  year: 2024
  ident: ref_6
  article-title: Sociology of Twitter/X: Trends, Challenges, and Future Research Directions
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev-soc-031021-035658
– ident: ref_37
  doi: 10.1007/978-1-4842-5364-9
– volume: 12
  start-page: 94250
  year: 2024
  ident: ref_39
  article-title: A comprehensive review of convolutional neural networks for defect detection in industrial applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3425166
– volume: 35
  start-page: 91
  year: 2018
  ident: ref_4
  article-title: Trends of infodemiology studies: A scoping review
  publication-title: Health Inf. Libr. J.
  doi: 10.1111/hir.12216
– volume: 52
  start-page: 505
  year: 2024
  ident: ref_32
  article-title: Hydrogen production via renewable-based energy system: Thermoeconomic assessment and Long Short-Term Memory (LSTM) optimization approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.03.456
– volume: 20
  start-page: 1334
  year: 2018
  ident: ref_40
  article-title: Fuzzy approach topic discovery in health and medical corpora
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0327-9
– volume: 10
  start-page: e34492
  year: 2022
  ident: ref_24
  article-title: Traditional ML and BERT-based automatic classification of tweets about eating disorders: Algorithm development and validation
  publication-title: JMIR Med. Inform.
  doi: 10.2196/34492
– ident: ref_34
  doi: 10.1371/journal.pone.0301835
– volume: 47
  start-page: 680
  year: 2024
  ident: ref_14
  article-title: Capitalising on Twitter for policy learning during crises: The case of the COVID-19 pandemic
  publication-title: Int. J. Public Adm.
  doi: 10.1080/01900692.2023.2171432
SSID ssj0000913830
Score 2.3327901
Snippet Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3987
SubjectTerms Accuracy
Collaboration
Communication
COVID-19
Deep learning
Disease transmission
Emergency communications systems
Epidemics
False information
Machine learning
Mpox
News media
Pandemics
Public health
Public participation
Real time
Recommender systems
Risk assessment
Social networks
Stability
Swine flu
Title Detecting Shifts in Public Discourse from Offline to Online Using Deep Learning
URI https://www.proquest.com/docview/3265895075
Volume 14
WOSCitedRecordID wos001601447800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQdWiI8FRGGpfEDiQtQ4thvnhBbaFRy2G_EhLVwiJx5DL223CRz57cw0LruHFScuudhSLI0985498wbgpXTSEW4wSeaVTrSxmFAYTskZNtobnaGbhl2ziXyxsBcXRRnLo9uYVrn3iTtH3as9c942OeGJXzd8Yz4h0GFsQVjGvNlcJtxDit9aY0ONAxiy8FY6gGH54az8-vfOhTUwrUp78SFFS5pc9Zpppc5SVXBq3bUAdbOb3sWe0_v_d9UP4F7EoOKk3zQP4RaujuDwmjLhEdztr_NEX6X0CM5nyK8NNCY-_ViGrhXLlYhzZsu2WXMuiOBaFXEeAkNX0a1Fr2MqdmkJYoa4EVHO9ftj-HI6__zufRJ7MSSNkqpL0KN02mbK11jUFlHmIU2DzqSXlmCfrl2d-9TUhhhIXhtiUYGojKlVwMbbXD2BwWq9wqcgXK2QSBoRGfTaFVNLk7GxchocSpm7EbzeG6Da9JIbFVEVtld1g71G8IqNVPGB7LaucbGugH7G0lbVCZfA5OTZ7AiO90aq4kltqyubPPv38HO4k3HvX85mkccw6LY_8QXcbn51y3Y7huHb-aL8OIaDs99z-pbm2zhuvz9-6OmS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BalUCGgBsVDABxAXosaxvXEOCFUsVauWbSVaqeKSOvEY9rK7bNJW_Cl-IzP5oD1U3HrgbCeR46eZN_bMPIA30klHvMFEiVc60sZiRG44JmNYam90gm4YGrGJdDy2p6fZ0RL87mthOK2yt4mNofazks_It4hmGJsRezEf5z8jVo3i29VeQqOFxT7-uqSQrfqwN6L9fZskO5-PP-1GnapAVCqp6gg9SqdtonyBWWERZRriOOhEemmJwOjCFamPTWGIS6eFoXggECk3hQpYepsqeu8y3NE6iVkx4ch8-3umwz02rYrb5kaKlrx1pWVTSXpAZZy6d80B3uwGGt-28_B_-yuP4EHHosV2C_t1WMLpBqxd6624AffbA0nR1lk9hsMR8n0JjYmvPyahrsRkKro5o0lVzjibRXC1jTgMgcm3qGei7cQqmsQKMUKci64h7fcncHIrK3wKK9PZFJ-BcIVCCjMpFEOvXTa0NBlLK4fBoZSpG8D7fovzeds0JKdgixGR34CIAbxjGORsUuqFK11XGUEf4-Zc-TYX8aRkm-0ANnsY5J2tqfIrDDz_9_BrWN09_nKQH-yN91_AvYSVjDk3R27CSr04x5dwt7yoJ9XiVQNrAWe3jZg_VOE2Qg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tXYRAiI8FRGEBH0BciBrHduMcEFoRKqqFbiVAWk5ZJx5DL21pAoi_xq9jpknYPay47YGzrUSxX2be2DPzAJ5KJx3xBhMlXulIG4sRueGYjGGlvdEJunHYik2ks5k9Ps7mO_C7r4XhtMreJm4NtV9VfEY-IpphbEbsxYxClxYxzyev1t8iVpDim9ZeTqOFyCH--knhW_1ymtNeP0uSyZuPr99GncJAVCmpmgg9SqdtonyJWWkRZRriOOhEemmJzOjSlamPTWmIV6elodggEEE3pQpYeZsqeu4l2E1Zv3cAu_Pp-_nnvyc83HHTqrhtdaRoAUanyja11EmsMk7kO-MOz3cKW083ufk_r9EtuNHxa3HQ_hC3YQeXe3DtTNfFPbjeHlWKtgLrDhzlyDcpNCY-fF2EphaLpejm5Iu6WnGei-A6HHEUAtNy0axE26NVbFMuRI64Fl2r2i934dOFfOE9GCxXS7wPwpUKKQClIA29dtnY0mSsrBwHh1Kmbggv-u0u1m07kYLCMEZHcQ46hvCcIVGwsWk2rnJdzQS9jNt2FQdc3pOS1bZD2O8hUXRWqC5O8fDg38NP4AoBpXg3nR0-hKsJSxxz0o7ch0Gz-Y6P4HL1o1nUm8cdxgWcXDRk_gDfdUBy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Shifts+in+Public+Discourse+from+Offline+to+Online+Using+Deep+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Abubakar+Ibrahim%2C+Adamu&rft.au=Khan%2C+Fazeel+Ahmed&rft.date=2025-10-11&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Felectronics14203987&rft.externalDocID=A862470708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon