Detecting Shifts in Public Discourse from Offline to Online Using Deep Learning
Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 14; číslo 20; s. 3987 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
11.10.2025
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to online, necessitate rigorous validation. That is why this study proposed the application of deep learning techniques to the boundaries and deviation of accuracies in health-related topics by analyzing health-related tweets from major news outlets such as BBC, CNN, CBC, and Reuters. The study developed LSTM and CNN classifiers to categorize content pertinent to the discourse following the formal deep learning process and employed a sequence of VAEs to verify the learnability and stability of the classifiers. The LSTM demonstrated superior performance compared to CNN, attaining validation accuracies of 98.4% on BBC and CNN, 97.8% on CBC, and 97.3% on Reuters. The optimal configuration of our LSTM achieved a precision of 98.69%, a recall of 98.20%, and an F1-score of 97.90% and recorded the lowest false positive rate, at 1.30%. This provided us with the optimal overall equilibrium for operational oversight. The VAE runs demonstrated that the model exhibited stability and the ability to generalize across different sources, achieving approximately 99.6% for Reuters and around 98.4% for BBC. The findings confirm that deep learning models are capable of reliably tracking the online migration of health discourse driven by news media. This provides a solid foundation for near-real-time monitoring of public engagement and for informing sustainable healthcare recommendation systems. |
|---|---|
| AbstractList | Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping and enhancing discussions around many topics. This study argues that health-related topics in public discourse, transitioning from offline to online, necessitate rigorous validation. That is why this study proposed the application of deep learning techniques to the boundaries and deviation of accuracies in health-related topics by analyzing health-related tweets from major news outlets such as BBC, CNN, CBC, and Reuters. The study developed LSTM and CNN classifiers to categorize content pertinent to the discourse following the formal deep learning process and employed a sequence of VAEs to verify the learnability and stability of the classifiers. The LSTM demonstrated superior performance compared to CNN, attaining validation accuracies of 98.4% on BBC and CNN, 97.8% on CBC, and 97.3% on Reuters. The optimal configuration of our LSTM achieved a precision of 98.69%, a recall of 98.20%, and an F1-score of 97.90% and recorded the lowest false positive rate, at 1.30%. This provided us with the optimal overall equilibrium for operational oversight. The VAE runs demonstrated that the model exhibited stability and the ability to generalize across different sources, achieving approximately 99.6% for Reuters and around 98.4% for BBC. The findings confirm that deep learning models are capable of reliably tracking the online migration of health discourse driven by news media. This provides a solid foundation for near-real-time monitoring of public engagement and for informing sustainable healthcare recommendation systems. |
| Audience | Academic |
| Author | Khan, Fazeel Ahmed Abubakar Ibrahim, Adamu |
| Author_xml | – sequence: 1 givenname: Adamu orcidid: 0000-0001-6471-481X surname: Abubakar Ibrahim fullname: Abubakar Ibrahim, Adamu – sequence: 2 givenname: Fazeel Ahmed orcidid: 0000-0001-9154-6727 surname: Khan fullname: Khan, Fazeel Ahmed |
| BookMark | eNptUE1PwzAMjdCQGGO_gEskzhv5aJrkOG18SZOKBDtXTeqMTF06ku7AvydjHDhgH_xsvWdb7xqNQh8AoVtK5pxrcg8d2CH2wdtEC0a4VvICjRmReqaZZqM_-ApNU9qRHJpyxckYVSsYstyHLX778G5I2Af8ejSdt3jlk-2PMQF2sd_jyrnOB8BDj6vwgzbppFsBHPAamhhyd4MuXdMlmP7WCdo8Prwvn2fr6ulluVjPLKd8mEELtCkU460BbRQAlY4QVzDaUkVEUZjGyJYII0oppBG6LJ2QpTDcgW2V5BN0d957iP3nEdJQ7_KrIZ-sOSuF0oJIkVnzM2vbdFD74PohNjZnC3tvs43O5_lClayQRBKVBfwssLFPKYKrD9Hvm_hVU1Kf3K7_cZt_A_gfdq4 |
| Cites_doi | 10.3390/bdcc8120186 10.1109/TNNLS.2021.3084827 10.3390/su14074113 10.3390/app12083709 10.3390/app14135556 10.1016/j.chb.2020.106568 10.3390/ijerph192416376 10.1016/j.jksuci.2024.102068 10.3390/electronics12061302 10.2196/49724 10.1007/978-3-030-66450-3_1 10.3390/computation7020025 10.1016/j.heliyon.2024.e37760 10.2105/AJPH.2016.303512 10.1038/s41598-025-97778-7 10.1016/j.chaos.2024.115105 10.1029/2023SW003763 10.3390/bdcc6020065 10.2196/21978 10.2196/17187 10.1007/s10844-020-00633-6 10.1016/j.engappai.2024.108510 10.1145/3025453.3025891 10.1016/j.hlpt.2024.100846 10.1097/EDE.0000000000001133 10.2196/16206 10.1093/tbm/ibab148 10.3390/informatics10030065 10.3390/bdcc7020116 10.1016/j.heliyon.2023.e22844 10.2196/38786 10.1016/j.artmed.2024.102900 10.1080/10410236.2023.2170201 10.4018/979-8-3693-1214-8.ch017 10.1186/s12911-024-02600-5 10.1109/ACCESS.2022.3151048 10.1146/annurev-soc-031021-035658 10.1007/978-1-4842-5364-9 10.1109/ACCESS.2024.3425166 10.1111/hir.12216 10.1016/j.ijhydene.2023.03.456 10.1007/s40815-017-0327-9 10.2196/34492 10.1371/journal.pone.0301835 10.1080/01900692.2023.2171432 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics14203987 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health |
| EISSN | 2079-9292 |
| ExternalDocumentID | A862470708 10_3390_electronics14203987 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-ede1a4823dbe9b8ee17f00f421d180544bab7d05b56757b5966f5765b3fecd873 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601447800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sat Nov 01 11:23:02 EDT 2025 Tue Nov 11 03:50:49 EST 2025 Sat Nov 29 07:14:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-ede1a4823dbe9b8ee17f00f421d180544bab7d05b56757b5966f5765b3fecd873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6471-481X 0000-0001-9154-6727 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3265895075?pq-origsite=%requestingapplication% |
| PQID | 3265895075 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_3265895075 gale_infotracacademiconefile_A862470708 crossref_primary_10_3390_electronics14203987 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-11 |
| PublicationDateYYYYMMDD | 2025-10-11 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chinnasamy (ref_18) 2023; 9 Wu (ref_25) 2024; 185 Vidal (ref_24) 2022; 10 ref_12 Rodrigues (ref_28) 2024; 13 Lahat (ref_14) 2024; 47 Brahmi (ref_38) 2024; 133 Heydarian (ref_42) 2022; 10 ref_17 ref_16 Karami (ref_40) 2018; 20 Hassan (ref_30) 2024; 36 ref_20 Joshi (ref_13) 2020; 31 ref_27 Nerella (ref_19) 2024; 154 Li (ref_5) 2022; 12 Alam (ref_23) 2024; 10 ref_34 ref_31 Kostkova (ref_7) 2014; 5 Cho (ref_21) 2024; 12 Mavragani (ref_3) 2020; 22 Skunkan (ref_9) 2020; 6 Khanam (ref_39) 2024; 12 ref_37 Zeraatkar (ref_4) 2018; 35 Ruhani (ref_32) 2024; 52 Kbaier (ref_22) 2024; 26 Li (ref_36) 2021; 33 Klimiuk (ref_2) 2024; 78 Tran (ref_15) 2021; 57 Jeong (ref_33) 2024; 22 Khan (ref_35) 2024; 16 (ref_26) 2021; 23 ref_47 Lee (ref_10) 2024; 39 ref_46 ref_45 ref_44 ref_43 ref_41 ref_1 Sinnenberg (ref_29) 2017; 107 ref_49 ref_48 ref_8 Wang (ref_11) 2021; 114 Murthy (ref_6) 2024; 50 |
| References_xml | – ident: ref_44 doi: 10.3390/bdcc8120186 – volume: 33 start-page: 6999 year: 2021 ident: ref_36 article-title: A survey of convolutional neural networks: Analysis, applications, and prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – ident: ref_43 doi: 10.3390/su14074113 – ident: ref_48 doi: 10.3390/app12083709 – ident: ref_31 doi: 10.3390/app14135556 – volume: 114 start-page: 106568 year: 2021 ident: ref_11 article-title: Examining risk and crisis communications of government agencies and stakeholders during early-stages of COVID-19 on Twitter publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2020.106568 – ident: ref_46 doi: 10.3390/ijerph192416376 – volume: 36 start-page: 102068 year: 2024 ident: ref_30 article-title: RNN-LSTM: From applications to modeling techniques and beyond—Systematic review publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2024.102068 – ident: ref_47 doi: 10.3390/electronics12061302 – volume: 12 start-page: e49724 year: 2024 ident: ref_21 article-title: Task-Specific Transformer-Based Language Models in Health Care: Scoping Review publication-title: JMIR Med. Inform. doi: 10.2196/49724 – ident: ref_16 doi: 10.1007/978-3-030-66450-3_1 – ident: ref_17 doi: 10.3390/computation7020025 – volume: 10 start-page: e37760 year: 2024 ident: ref_23 article-title: Dissecting the infodemic: An in-depth analysis of COVID-19 misinformation detection on X (formerly Twitter) utilizing machine learning and deep learning techniques publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e37760 – volume: 107 start-page: e1 year: 2017 ident: ref_29 article-title: Twitter as a tool for health research: A systematic review publication-title: Am. J. Public Health doi: 10.2105/AJPH.2016.303512 – ident: ref_27 doi: 10.1038/s41598-025-97778-7 – volume: 185 start-page: 115105 year: 2024 ident: ref_25 article-title: Comparing the accuracy of ANN with transformer models for sentiment analysis of tweets related to COVID-19 Pfizer vaccines publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.115105 – volume: 22 start-page: e2023SW003763 year: 2024 ident: ref_33 article-title: Deep Learning-Based Regional Ionospheric Total Electron Content Prediction—Long Short-Term Memory (LSTM) and Convolutional LSTM Approach publication-title: Space Weather doi: 10.1029/2023SW003763 – ident: ref_49 doi: 10.3390/bdcc6020065 – volume: 6 start-page: e21978 year: 2020 ident: ref_9 article-title: Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modelling study publication-title: JMIR Public Health Surveill. doi: 10.2196/21978 – volume: 23 start-page: e17187 year: 2021 ident: ref_26 article-title: Prevalence of health misinformation on social media: Systematic review publication-title: J. Med. Internet Res. doi: 10.2196/17187 – volume: 57 start-page: 171 year: 2021 ident: ref_15 article-title: Recommender systems in the healthcare domain: State-of-the-art and research issues publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-020-00633-6 – volume: 133 start-page: 108510 year: 2024 ident: ref_38 article-title: Exploring the role of Convolutional Neural Networks (CNN) in dental radiography segmentation: A comprehensive Systematic Literature Review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108510 – ident: ref_41 – volume: 5 start-page: 8 year: 2014 ident: ref_7 article-title: # swineflu: The use of twitter as an early warning and risk communication tool in the 2009 swine flu pandemic publication-title: ACM Trans. Manag. Inf. Syst. (TMIS) – ident: ref_12 doi: 10.1145/3025453.3025891 – volume: 13 start-page: 100846 year: 2024 ident: ref_28 article-title: The social media infodemic of health-related misinformation and technical solutions publication-title: Health Policy Technol. doi: 10.1016/j.hlpt.2024.100846 – volume: 31 start-page: 90 year: 2020 ident: ref_13 article-title: Harnessing tweets for early detection of an acute disease event publication-title: Epidemiology doi: 10.1097/EDE.0000000000001133 – volume: 22 start-page: e16206 year: 2020 ident: ref_3 article-title: Infodemiology and infoveillance: Scoping review publication-title: J. Med. Internet Res. doi: 10.2196/16206 – volume: 12 start-page: 243 year: 2022 ident: ref_5 article-title: Vaccine hesitancy and behavior change theory-based social media interventions: A systematic review publication-title: Transl. Behav. Med. doi: 10.1093/tbm/ibab148 – ident: ref_45 doi: 10.3390/informatics10030065 – ident: ref_8 doi: 10.3390/bdcc7020116 – volume: 16 start-page: 5 year: 2024 ident: ref_35 article-title: Machine Learning-based Enhanced Deep Packet Inspection for IP Packet Priority Classification with Differentiated Services Code Point for Advance Network Management publication-title: J. Telecommun. Electron. Comput. Eng. (JTEC) – volume: 9 start-page: e22844 year: 2023 ident: ref_18 article-title: Health recommendation system using deep learning-based collaborative filtering publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e22844 – volume: 26 start-page: e38786 year: 2024 ident: ref_22 article-title: Prevalence of Health Misinformation on Social Media—Challenges and Mitigation Before, During, and Beyond the COVID-19 Pandemic: Scoping Literature Review publication-title: J. Med. Internet Res. doi: 10.2196/38786 – volume: 154 start-page: 102900 year: 2024 ident: ref_19 article-title: Transformers and large language models in healthcare: A review publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2024.102900 – volume: 39 start-page: 493 year: 2024 ident: ref_10 article-title: Examining COVID-19 tweet diffusion using an integrated social amplification of risk and issue-attention cycle framework publication-title: Health Commun. doi: 10.1080/10410236.2023.2170201 – ident: ref_1 doi: 10.4018/979-8-3693-1214-8.ch017 – ident: ref_20 doi: 10.1186/s12911-024-02600-5 – volume: 10 start-page: 19083 year: 2022 ident: ref_42 article-title: MLCM: Multi-label confusion matrix publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151048 – volume: 78 start-page: 81 year: 2024 ident: ref_2 article-title: What is infodemiology? An overview and its role in public health publication-title: Epidemiol. Rev./Przegląd Epidemiol. – volume: 50 start-page: 169 year: 2024 ident: ref_6 article-title: Sociology of Twitter/X: Trends, Challenges, and Future Research Directions publication-title: Annu. Rev. Sociol. doi: 10.1146/annurev-soc-031021-035658 – ident: ref_37 doi: 10.1007/978-1-4842-5364-9 – volume: 12 start-page: 94250 year: 2024 ident: ref_39 article-title: A comprehensive review of convolutional neural networks for defect detection in industrial applications publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3425166 – volume: 35 start-page: 91 year: 2018 ident: ref_4 article-title: Trends of infodemiology studies: A scoping review publication-title: Health Inf. Libr. J. doi: 10.1111/hir.12216 – volume: 52 start-page: 505 year: 2024 ident: ref_32 article-title: Hydrogen production via renewable-based energy system: Thermoeconomic assessment and Long Short-Term Memory (LSTM) optimization approach publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.03.456 – volume: 20 start-page: 1334 year: 2018 ident: ref_40 article-title: Fuzzy approach topic discovery in health and medical corpora publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0327-9 – volume: 10 start-page: e34492 year: 2022 ident: ref_24 article-title: Traditional ML and BERT-based automatic classification of tweets about eating disorders: Algorithm development and validation publication-title: JMIR Med. Inform. doi: 10.2196/34492 – ident: ref_34 doi: 10.1371/journal.pone.0301835 – volume: 47 start-page: 680 year: 2024 ident: ref_14 article-title: Capitalising on Twitter for policy learning during crises: The case of the COVID-19 pandemic publication-title: Int. J. Public Adm. doi: 10.1080/01900692.2023.2171432 |
| SSID | ssj0000913830 |
| Score | 2.3327901 |
| Snippet | Increasingly, discussions that once took place in social environments are transitioning to digital platforms. The role of news media is significant in shaping... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3987 |
| SubjectTerms | Accuracy Collaboration Communication COVID-19 Deep learning Disease transmission Emergency communications systems Epidemics False information Machine learning Mpox News media Pandemics Public health Public participation Real time Recommender systems Risk assessment Social networks Stability Swine flu |
| Title | Detecting Shifts in Public Discourse from Offline to Online Using Deep Learning |
| URI | https://www.proquest.com/docview/3265895075 |
| Volume | 14 |
| WOSCitedRecordID | wos001601447800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQdWiI8FRGGpfEDiQtQ4thvnhBbaFRy2G_EhLVwiJx5DL223CRz57cw0LruHFScuudhSLI0985498wbgpXTSEW4wSeaVTrSxmFAYTskZNtobnaGbhl2ziXyxsBcXRRnLo9uYVrn3iTtH3as9c942OeGJXzd8Yz4h0GFsQVjGvNlcJtxDit9aY0ONAxiy8FY6gGH54az8-vfOhTUwrUp78SFFS5pc9Zpppc5SVXBq3bUAdbOb3sWe0_v_d9UP4F7EoOKk3zQP4RaujuDwmjLhEdztr_NEX6X0CM5nyK8NNCY-_ViGrhXLlYhzZsu2WXMuiOBaFXEeAkNX0a1Fr2MqdmkJYoa4EVHO9ftj-HI6__zufRJ7MSSNkqpL0KN02mbK11jUFlHmIU2DzqSXlmCfrl2d-9TUhhhIXhtiUYGojKlVwMbbXD2BwWq9wqcgXK2QSBoRGfTaFVNLk7GxchocSpm7EbzeG6Da9JIbFVEVtld1g71G8IqNVPGB7LaucbGugH7G0lbVCZfA5OTZ7AiO90aq4kltqyubPPv38HO4k3HvX85mkccw6LY_8QXcbn51y3Y7huHb-aL8OIaDs99z-pbm2zhuvz9-6OmS |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB21BalUCGgBsVDABxAXosaxvXEOCFUsVauWbSVaqeKSOvEY9rK7bNJW_Cl-IzP5oD1U3HrgbCeR46eZN_bMPIA30klHvMFEiVc60sZiRG44JmNYam90gm4YGrGJdDy2p6fZ0RL87mthOK2yt4mNofazks_It4hmGJsRezEf5z8jVo3i29VeQqOFxT7-uqSQrfqwN6L9fZskO5-PP-1GnapAVCqp6gg9SqdtonyBWWERZRriOOhEemmJwOjCFamPTWGIS6eFoXggECk3hQpYepsqeu8y3NE6iVkx4ch8-3umwz02rYrb5kaKlrx1pWVTSXpAZZy6d80B3uwGGt-28_B_-yuP4EHHosV2C_t1WMLpBqxd6624AffbA0nR1lk9hsMR8n0JjYmvPyahrsRkKro5o0lVzjibRXC1jTgMgcm3qGei7cQqmsQKMUKci64h7fcncHIrK3wKK9PZFJ-BcIVCCjMpFEOvXTa0NBlLK4fBoZSpG8D7fovzeds0JKdgixGR34CIAbxjGORsUuqFK11XGUEf4-Zc-TYX8aRkm-0ANnsY5J2tqfIrDDz_9_BrWN09_nKQH-yN91_AvYSVjDk3R27CSr04x5dwt7yoJ9XiVQNrAWe3jZg_VOE2Qg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tXYRAiI8FRGEBH0BciBrHduMcEFoRKqqFbiVAWk5ZJx5DL21pAoi_xq9jpknYPay47YGzrUSxX2be2DPzAJ5KJx3xBhMlXulIG4sRueGYjGGlvdEJunHYik2ks5k9Ps7mO_C7r4XhtMreJm4NtV9VfEY-IpphbEbsxYxClxYxzyev1t8iVpDim9ZeTqOFyCH--knhW_1ymtNeP0uSyZuPr99GncJAVCmpmgg9SqdtonyJWWkRZRriOOhEemmJzOjSlamPTWmIV6elodggEEE3pQpYeZsqeu4l2E1Zv3cAu_Pp-_nnvyc83HHTqrhtdaRoAUanyja11EmsMk7kO-MOz3cKW083ufk_r9EtuNHxa3HQ_hC3YQeXe3DtTNfFPbjeHlWKtgLrDhzlyDcpNCY-fF2EphaLpejm5Iu6WnGei-A6HHEUAtNy0axE26NVbFMuRI64Fl2r2i934dOFfOE9GCxXS7wPwpUKKQClIA29dtnY0mSsrBwHh1Kmbggv-u0u1m07kYLCMEZHcQ46hvCcIVGwsWk2rnJdzQS9jNt2FQdc3pOS1bZD2O8hUXRWqC5O8fDg38NP4AoBpXg3nR0-hKsJSxxz0o7ch0Gz-Y6P4HL1o1nUm8cdxgWcXDRk_gDfdUBy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Shifts+in+Public+Discourse+from+Offline+to+Online+Using+Deep+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Abubakar+Ibrahim%2C+Adamu&rft.au=Khan%2C+Fazeel+Ahmed&rft.date=2025-10-11&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Felectronics14203987&rft.externalDocID=A862470708 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |