Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment

With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 66; no. 3; pp. 2723 - 2749
Main Authors: Shahzadi, Shumaila, Ahmad, Fahad, Basharat, Asma, Alruwaili, Madallah, Alanazi, Saad, Humayun, Mamoona, Rizwan, Muhammad, Naseem, Shahid
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2021
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to keep the system in the operational state proactively. The fundamental concept behind SDN-NFV is the encroachment from specific resource execution to the programming-based structure. This research is around the combination of SDN and NFV for rational decision making to control and monitor traffic in the virtualized environment. The combination is often seen as an extra burden in terms of resources usage in a heterogeneous network environment, but as well as it provides the solution for critical problems specially regarding massive network traffic issues. The attacks have been expanding step by step; therefore, it is hard to recognize and protect by conventional methods. To overcome these issues, there must be an autonomous system to recognize and characterize the network traffic’s abnormal conduct if there is any. Only four types of assaults, including HTTP Flood, UDP Flood, Smurf Flood, and SiDDoS Flood, are considered in the identified dataset, to optimize the stability of the SDN-NFV environment and security management, through several machine learning based characterization techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) and Isolation Forest (IF). Python is used for simulation purposes, including several valuable utilities like the mine package, the open-source Python ML libraries Scikit-learn, NumPy, SciPy, Matplotlib. Few Flood assaults and Structured Query Language (SQL) injections anomalies are validated and effectively-identified through the anticipated procedure. The classification results are promising and show that overall accuracy lies between 87% to 95% for SVM, LR, KNN, and IF classifiers in the scrutiny of traffic, whether the network traffic is normal or anomalous in the SDN-NFV environment.
AbstractList With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to keep the system in the operational state proactively. The fundamental concept behind SDN-NFV is the encroachment from specific resource execution to the programming-based structure. This research is around the combination of SDN and NFV for rational decision making to control and monitor traffic in the virtualized environment. The combination is often seen as an extra burden in terms of resources usage in a heterogeneous network environment, but as well as it provides the solution for critical problems specially regarding massive network traffic issues. The attacks have been expanding step by step; therefore, it is hard to recognize and protect by conventional methods. To overcome these issues, there must be an autonomous system to recognize and characterize the network traffic’s abnormal conduct if there is any. Only four types of assaults, including HTTP Flood, UDP Flood, Smurf Flood, and SiDDoS Flood, are considered in the identified dataset, to optimize the stability of the SDN-NFV environment and security management, through several machine learning based characterization techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) and Isolation Forest (IF). Python is used for simulation purposes, including several valuable utilities like the mine package, the open-source Python ML libraries Scikit-learn, NumPy, SciPy, Matplotlib. Few Flood assaults and Structured Query Language (SQL) injections anomalies are validated and effectively-identified through the anticipated procedure. The classification results are promising and show that overall accuracy lies between 87% to 95% for SVM, LR, KNN, and IF classifiers in the scrutiny of traffic, whether the network traffic is normal or anomalous in the SDN-NFV environment.
Author Basharat, Asma
Rizwan, Muhammad
Ahmad, Fahad
Humayun, Mamoona
Alanazi, Saad
Naseem, Shahid
Shahzadi, Shumaila
Alruwaili, Madallah
Author_xml – sequence: 1
  givenname: Shumaila
  surname: Shahzadi
  fullname: Shahzadi, Shumaila
– sequence: 2
  givenname: Fahad
  surname: Ahmad
  fullname: Ahmad, Fahad
– sequence: 3
  givenname: Asma
  surname: Basharat
  fullname: Basharat, Asma
– sequence: 4
  givenname: Madallah
  surname: Alruwaili
  fullname: Alruwaili, Madallah
– sequence: 5
  givenname: Saad
  surname: Alanazi
  fullname: Alanazi, Saad
– sequence: 6
  givenname: Mamoona
  surname: Humayun
  fullname: Humayun, Mamoona
– sequence: 7
  givenname: Muhammad
  surname: Rizwan
  fullname: Rizwan, Muhammad
– sequence: 8
  givenname: Shahid
  surname: Naseem
  fullname: Naseem, Shahid
BookMark eNp1kE1PAjEQhhuDiYDePTbxvNjv3R4NgpoAalCvTel2sQRa7O5i-PcW8WBMPM1k8rwzk6cHOj54C8AlRgNKBGLXZmMGBBE8QJhxyU5AF3MmMkKI6Pzqz0CvrlcIUUEl6oJqqs278xZOrI7e-SUcbbbh00Zbwrk1bXTNHk6110u7sb6B2pfwudXrwzhUCYk7Zyx8imHnahc8dB7Ob2fZbPwGR37nYvCH3Dk4rfS6thc_tQ9ex6OX4X02ebx7GN5MMkMxbTJbMMsrIheScGuMoBrliMsScy0LnZcS59zwxNC8LJjhZc61QAUSxYKKojS0D66Oe7cxfLS2btQqtNGnk4qwnPFESpQocaRMDHUdbaWMa3ST3m-idmuFkfp2qpJTdXCqjk5TEP0JbqPb6Lj_P_IFfeB7Lg
CitedBy_id crossref_primary_10_32604_cmc_2021_016591
crossref_primary_10_1016_j_ijdrr_2022_103470
crossref_primary_10_32604_cmc_2022_023215
crossref_primary_10_1002_itl2_519
crossref_primary_10_1007_s10207_025_01114_z
crossref_primary_10_1155_2022_6138434
crossref_primary_10_32604_cmc_2022_018505
crossref_primary_10_1109_JSEN_2021_3066492
crossref_primary_10_32604_cmc_2021_018625
crossref_primary_10_1016_j_jksuci_2022_02_017
crossref_primary_10_32604_cmc_2021_015922
crossref_primary_10_1016_j_ecolind_2023_110457
Cites_doi 10.1145/3172866
10.30630/joiv.1.4.40
10.1109/JSAC.2019.2959197
10.1109/MCOM.2018.1700560
10.14569/IJACSA.2019.0100138
10.1109/ACCESS.2019.2915195
10.1016/j.procs.2020.03.330
10.32604/cmc.2020.06418
10.1109/MNET.001.1900273
10.1186/s42400-019-0038-7
10.14569/IJACSA.2019.0100321
10.14569/IJACSA.2019.0100110
10.1109/COMST.2017.2690823
10.1109/COMST.2019.2896380
10.1109/JSAC.2020.2986621
10.1155/2020/5352108
10.1109/ACCESS.2020.2996214
10.1155/2019/2509898
10.3390/su12104255
10.1016/j.future.2018.08.050
10.1016/j.comnet.2020.107364
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2021.014594
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2749
ExternalDocumentID 10_32604_cmc_2021_014594
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-e84e5f29b925ecc63a07059d15a98a7d9175c54e537d84c5d75a608068b368dc3
IEDL.DBID BENPR
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604616100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 07:37:17 EST 2025
Tue Nov 18 22:08:03 EST 2025
Sat Nov 29 05:53:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-e84e5f29b925ecc63a07059d15a98a7d9175c54e537d84c5d75a608068b368dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2474506890?pq-origsite=%requestingapplication%
PQID 2474506890
PQPubID 2048737
PageCount 27
ParticipantIDs proquest_journals_2474506890
crossref_citationtrail_10_32604_cmc_2021_014594
crossref_primary_10_32604_cmc_2021_014594
PublicationCentury 2000
PublicationDate 2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Khraisat (ref34) 2019; 2
Abdulqadder (ref22) 2020; 179
Ayoubi (ref26) 2018; 56
Khalid (ref29) 2019; 10
Thakkar (ref38) 2020; 167
Nguyen (ref15) 2017; 19
Shabbir (ref2) 2019; 2019
Kumar (ref6) 2017; 1
Bonfim (ref32) 2019; 51
Shabbir (ref25) 2018; 4
Prasanna (ref37) 2019
Cath (ref23) 2018; 24
Zarca (ref21) 2020; 38
Lee (ref30) 2017
Shah (ref3) 2019
Liu (ref35) 2020; 67
Das (ref1) 2018; 65
Allen (ref8) 2017
Shi (ref5) 2020; 62
Shahzadi (ref10) 2020; 2020
Krishnan (ref33) 2020; 50
Dilawar (ref18) 2019; 10
Abdulqadder (ref14) 2018
Nadeem (ref31) 2019; 10
Mathas (ref36) 2018
Chaabouni (ref7) 2019; 21
Behnke (ref20) 2019
Pastor (ref28) 2018
Wei (ref27) 2020; 38
Benzaid (ref12) 2020; 34
Rehman (ref11) 2019; 7
Yang (ref13) 2019; 93
Bagaa (ref16) 2020; 8
Ahmad (ref24) 2017; 17
ref4
Farris (ref19) 2017
Ali (ref9) 2020; 12
Karan (ref17) 2018
References_xml – volume: 51
  start-page: 1
  year: 2019
  ident: ref32
  article-title: Integrated NFV/SDN architectures: A systematic literature review
  publication-title: ACM Computing Surveys
  doi: 10.1145/3172866
– volume: 1
  start-page: 122
  year: 2017
  ident: ref6
  article-title: Analysis of network function virtualization and software defined virtualization
  publication-title: International Journal on Informatics Visualization
  doi: 10.30630/joiv.1.4.40
– volume: 38
  start-page: 245
  year: 2020
  ident: ref27
  article-title: Guest editorial leveraging machine learning in SDN/NFV-based networks
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2019.2959197
– year: 2017
  ident: ref8
  publication-title: Artificial intelligence and national security
– volume: 56
  start-page: 158
  year: 2018
  ident: ref26
  article-title: Machine learning for cognitive network management
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2018.1700560
– volume: 10
  start-page: 288
  year: 2019
  ident: ref31
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2019.0100138
– volume: 50
  start-page: 757
  year: 2020
  ident: ref33
  article-title: SDN/NFV security framework for fog-to-things computing infrastructure
  publication-title: Software: Practice and Experience
– volume: 7
  start-page: 60439
  year: 2019
  ident: ref11
  article-title: Network functions virtualization: The long road to commercial deployments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915195
– volume: 167
  start-page: 636
  year: 2020
  ident: ref38
  article-title: A review of the advancement in intrusion detection datasets
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.330
– volume: 62
  start-page: 385
  year: 2020
  ident: ref5
  article-title: An openflow-based load balancing strategy in SDN
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.06418
– volume: 34
  start-page: 124
  year: 2020
  ident: ref12
  article-title: ZSM security: Threat surface and best practices
  publication-title: IEEE Network
  doi: 10.1109/MNET.001.1900273
– volume: 67
  start-page: 1
  year: 2020
  ident: ref35
  article-title: A SDN-based intelligent prediction approach to power traffic identification and monitoring for smart network access
  publication-title: Wireless Networks
– volume: 2
  start-page: 2
  year: 2019
  ident: ref34
  article-title: Survey of intrusion detection systems: Techniques, datasets and challenges
  publication-title: Cybersecurity
  doi: 10.1186/s42400-019-0038-7
– volume: 24
  start-page: 505
  year: 2018
  ident: ref23
  article-title: Artificial intelligence and the ‘good society’: The US, EU, and UK approach
  publication-title: Science and Engineering Ethics
– start-page: 1
  year: 2018
  ident: ref14
  article-title: Deployment of robust security scheme in SDN based 5G network over NFV enabled cloud environment
  publication-title: IEEE Transactions on Emerging Topics in Computing
– start-page: 169
  year: 2017
  ident: ref19
  article-title: Towards provisioning of SDN/NFV-based security enablers for integrated protection of IoT systems
– ident: ref4
– start-page: 866
  year: 2019
  ident: ref37
  article-title: Detection of distributed denial of service attack using NSL-KDD dataset: A survey
– volume: 10
  start-page: 166
  year: 2019
  ident: ref29
  article-title: Cloud server security using bio-cryptography
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2019.0100321
– volume: 10
  start-page: 82
  year: 2019
  ident: ref18
  article-title: Blockchain: Securing internet of medical things (IoMT)
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2019.0100110
– volume: 19
  start-page: 1567
  year: 2017
  ident: ref15
  article-title: SDN/NFV-based mobile packet core network architectures: A survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2017.2690823
– start-page: 1
  year: 2019
  ident: ref20
  article-title: NFV-driven intrusion detection for smart manufacturing
– volume: 21
  start-page: 2671
  year: 2019
  ident: ref7
  article-title: Network intrusion detection for IoT security based on learning techniques
  publication-title: IEEE Communications Surveys and Tutorials
  doi: 10.1109/COMST.2019.2896380
– start-page: 265
  year: 2018
  ident: ref17
  article-title: Detection of DDoS attacks in software defined networks
– start-page: 1
  year: 2019
  ident: ref3
  article-title: An intuitive study: Intrusion detection systems and anomalies, how AI can be used as a tool to enable the majority, in 5G era
– volume: 38
  start-page: 1262
  year: 2020
  ident: ref21
  article-title: Virtual IoT honeynets to mitigate cyberattacks in SDN/NFV-enabled IoT networks
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2020.2986621
– start-page: 1
  year: 2018
  ident: ref28
  article-title: The mouseworld, a security traffic analysis lab based on NFV/SDN
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref10
  article-title: Security of cloud computing using adaptive neural fuzzy inference system
  publication-title: Security and Communication Networks
  doi: 10.1155/2020/5352108
– volume: 4
  start-page: 1
  year: 2018
  ident: ref25
  article-title: Neuro-biological emotionally intelligent model for human inspired empathetic agents
  publication-title: Journal of Cognitive Systems
– volume: 8
  start-page: 114066
  year: 2020
  ident: ref16
  article-title: A machine learning security framework for IoT systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996214
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref2
  article-title: Ensuring the confidentiality of nuclear information at cloud using modular encryption standard
  publication-title: Security and Communication Networks
  doi: 10.1155/2019/2509898
– volume: 17
  start-page: 77
  year: 2017
  ident: ref24
  article-title: Holographic interface management in the age of artificial intelligence
  publication-title: International Journal of Computer Science and Network Security
– start-page: 1
  year: 2018
  ident: ref36
  article-title: Evaluation of Apache spot’s machine learning capabilities in an SDN/NFV enabled environment
– volume: 65
  start-page: 139
  year: 2018
  ident: ref1
  article-title: European Union’s general data protection regulation, 2018: A brief overview
  publication-title: Annals of Library and Information Studies
– volume: 12
  start-page: 4255
  year: 2020
  ident: ref9
  article-title: Software-defined networking approaches for link failure recovery: A survey
  publication-title: Sustainability
  doi: 10.3390/su12104255
– year: 2017
  ident: ref30
  article-title: DELTA: A security assessment framework for software-defined networks
– volume: 93
  start-page: 687
  year: 2019
  ident: ref13
  article-title: Implementation of a real-time network traffic monitoring service with network functions virtualization
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.08.050
– volume: 179
  start-page: 107364
  year: 2020
  ident: ref22
  article-title: Multi-layered intrusion detection and prevention in the SDN/NFV enabled cloud of 5G networks using AI-based defense mechanisms
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107364
SSID ssj0036390
Score 2.360528
Snippet With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2723
SubjectTerms Abnormalities
Anomalies
Communications traffic
Cybersecurity
Decision making
Machine learning
Maintenance costs
Network security
Query languages
Software-defined networking
Source code
Structured Query Language-SQL
Support vector machines
Traffic control
Utilities
Virtual environments
Title Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment
URI https://www.proquest.com/docview/2474506890
Volume 66
WOSCitedRecordID wos000604616100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA8sDKZp_Ig9IR6tQKJRRAGVKUpsB1WiaWkLEv8eO3GourAwZYgTRfns78535_sAOGO-5FoxgTjmGlkNa8SVlyLtESKZJ1KcFqolD0EY8uFQRC7gNndllRUnFkStJtLGyNs-CQj1GBfe5fQDWdUom111EhrroG47lZl5Xr_uhtFjxcXY2N_iSCQlDPnGmpWJSuOyeKQtx7aFod-5sJk1QVYN0yovF8am1_jvZ26DLedmwqtyXuyANZ3vgkYl4QDdit4DWb8optTQ9Vl9g93x1AqnaQUHTtoOLktkYJIrWLbd-IaTDDqmgZENTNi4GxzlcHAborD3ArvLM3T74LnXfbq5Q056AUncwQukOdE080UqfGpAZjgx1ECF6tBE8CRQZpNHJTVjcKA4kVQFNGHG-WQ8xYwriQ9ALZ_k-hBARnVmnKSO72cpYVkqLGVkmRJBIqnx_pqgXf33WLq-5FYe4z02-5MCqdggFVuk4hKpJjj_fWJa9uT4Y2yrwil2q3MeL0E6-vv2Mdi07ypDLi1QW8w-9QnYkF-L0Xx26iabuUb3_ej1B4R73XI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH5VOiS4UL4mBgV82A47mKb-in2Ypom1WrU2qrQNjVNIbAdNYmlpC6h_it84O3GodtmtB85xLCd-9Lxf9vsA7AuipTVCYUmlxV7DGksT5dhGjGkRqZzmlWrJOE4SeX2tpi3429yF8ccqG06siNrMtM-R9wiLGY-EVNHx_Cf2qlG-utpIaNSwOLfrPy5kWx6NTt3-HhAyHFx-PsNBVQBr2qcrbCWzvCAqV4S79QuaOdRzZfo8UzKLjYtfuOZuDI2NZJqbmGfC-VVC5lRIo6mb9xHsMA_2NuxMR5Pp14b7qbP31RVMzgQmznrWhVHnIkWsp299y0TS_-QreYrdN4T37UBl3Iad_-23PIdnwY1GJzXuX0DLli-h00hUoMBYr6CYVIdFLQp9ZL-jwe3cC8NZgy6CdB_aHAFCWWlQ3VZkjWYFCkyKpj7x4vOK6KZEF6cJToZf0GBzR_A1XG3la3ehXc5K-waQ4LZwTmCfkCJnosiVp8SiMCrONHfe7R70mn1Odei77uU_fqQu_qqQkTpkpB4ZaY2MPTj898a87jnywNhug4s0sM8y3YDi7cOPP8KTs8vJOB2PkvN38NTPW6eXutBeLX7Z9_BY_17dLBcfAtARfNs2iO4A_QU3Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Empowered+Security+Management+and+Quality+of+Service+Provision+in+SDN-NFV+Environment&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Shahzadi%2C+Shumaila&rft.au=Ahmad%2C+Fahad&rft.au=Basharat%2C+Asma&rft.au=Alruwaili%2C+Madallah&rft.date=2021&rft.issn=1546-2226&rft.volume=66&rft.issue=3&rft.spage=2723&rft.epage=2749&rft_id=info:doi/10.32604%2Fcmc.2021.014594&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_014594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon