Feature-Driven Joint Source–Channel Coding for Robust 3D Image Transmission

Emerging applications like augmented reality (AR) demand efficient wireless transmission of high-resolution three-dimensional (3D) images, yet conventional systems struggle with the high data volume and vulnerability to noise. This paper proposes a novel feature-driven framework that integrates sema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 14; H. 19; S. 3907
Hauptverfasser: Liu, Yinuo, Xu, Hao, Bowman, Adrian, Chen, Weichao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2025
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging applications like augmented reality (AR) demand efficient wireless transmission of high-resolution three-dimensional (3D) images, yet conventional systems struggle with the high data volume and vulnerability to noise. This paper proposes a novel feature-driven framework that integrates semantic source coding with deep learning-based Joint Source–Channel Coding (JSCC) for robust and efficient transmission. Instead of processing dense meshes, the method first extracts a compact set of geometric features—specifically, the ridge and valley curves that define the object’s fundamental structure. This feature representation which is extracted by the anatomical curves is then processed by an end-to-end trained JSCC encoder, mapping the semantic information directly to channel symbols. This synergistic approach drastically reduces bandwidth requirements while leveraging the inherent resilience of JSCC for graceful degradation in noisy channels. The framework demonstrates superior reconstruction fidelity and robustness compared to traditional schemes, especially in low signal-to-noise ratio (SNR) regimes, enabling practical and efficient 3D semantic communications.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics14193907