Advanced Cybersecurity Framework for Detecting Fake Data Using Optimized Feature Selection and Stacked Ensemble Learning

As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 14; číslo 16; s. 3275
Hlavní autor: Alajlan, Abrar M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 18.08.2025
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection model was designed by combining an advanced feature selection method with a robust ensemble classification framework. Initially, the raw data are eliminated by performing normalization, feature transformation, and noise filtering that enhances the reliability of the model. The dimensionality issues are mitigated by eliminating redundant features via the proposed Elite Tuning Strategy-Enhanced Polar Bear Optimization algorithm. It simulates the hunting behavior of polar bears, balancing exploration and exploitation features. The proposed Stacking Ensemble-based Random AdaBoost Quadratic Discriminant model leverages the merits of diverse base learners, including AdaBoost, Quadratic Discriminant Analysis, and Random Forest, that classify the feature subset and the integration of prediction processes with a meta-feature vector-processed meta-classifier such as a multilayer perceptron or logistic regression model that predicts the final outcome. This hierarchical architecture validates resilience against noise and improves generalization and prediction accuracy. Thus, the experimental results show that the proposed method outperforms existing approaches in terms of accuracy, precision, and latency, yielding values of 98.78%, 98.75%, and 16 ms, respectively, using the UNSW-NB15 dataset.
AbstractList As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection model was designed by combining an advanced feature selection method with a robust ensemble classification framework. Initially, the raw data are eliminated by performing normalization, feature transformation, and noise filtering that enhances the reliability of the model. The dimensionality issues are mitigated by eliminating redundant features via the proposed Elite Tuning Strategy-Enhanced Polar Bear Optimization algorithm. It simulates the hunting behavior of polar bears, balancing exploration and exploitation features. The proposed Stacking Ensemble-based Random AdaBoost Quadratic Discriminant model leverages the merits of diverse base learners, including AdaBoost, Quadratic Discriminant Analysis, and Random Forest, that classify the feature subset and the integration of prediction processes with a meta-feature vector-processed meta-classifier such as a multilayer perceptron or logistic regression model that predicts the final outcome. This hierarchical architecture validates resilience against noise and improves generalization and prediction accuracy. Thus, the experimental results show that the proposed method outperforms existing approaches in terms of accuracy, precision, and latency, yielding values of 98.78%, 98.75%, and 16 ms, respectively, using the UNSW-NB15 dataset.
Audience Academic
Author Alajlan, Abrar M.
Author_xml – sequence: 1
  givenname: Abrar M.
  orcidid: 0000-0001-7097-356X
  surname: Alajlan
  fullname: Alajlan, Abrar M.
BookMark eNptUUtPAjEQbowmovILvDTxjPax3d0eCYiakHhQzptud0oKbIttUfHXW8SDB2eSeX8zk5kLdOq8A4SuKbnlXJI72IBOwTurIy1oyVklTtCAkUqOJJPs9I99joYxrkgmSXnNyQB9jrt35TR0eLJvIUTQu2DTHs-C6uHDhzU2PuAppDzDuiWeqTXgqUoKL-LBf94m29uvjJ-BSrsA-OVnH-sdVq7DL0npdc7euwh9uwE8BxVcRl6hM6M2EYa_-hItZvevk8fR_PnhaTKejzSnPI06zQXrZCVF3XZS0E5XhIE2WVApCmGYKQ1QKIG1GVC2tSkLLTgoJgotCb9EN8e-2-DfdhBTs_K74PLIhrOiIJTVZZGrbo9VS7WBxjrjU1A6cwe91fnexub4uBa84pQVh7b8CNDBxxjANNtgexX2DSXN4S3NP2_h34Ddhfo
Cites_doi 10.1109/ACCESS.2024.3370867
10.1016/j.csa.2024.100063
10.1109/ACCESS.2025.3551207
10.1016/j.egyai.2025.100470
10.1007/s11277-024-11050-1
10.1016/j.trc.2023.104089
10.1007/s11042-023-16406-6
10.1109/ACCESS.2023.3334645
10.3390/math12233823
10.1109/ACCESS.2023.3349376
10.1109/TVT.2025.3546194
10.1109/IOTM.001.2300191
10.1016/j.eij.2022.03.003
10.1109/ACCESS.2024.3420080
10.1109/ACCESS.2023.3347200
10.1038/s41598-025-88843-2
10.1049/smc2.12084
10.1016/j.asoc.2022.109955
10.1016/j.jnca.2024.103868
10.3390/app132413310
10.1038/s41598-024-55928-3
10.1016/j.inffus.2024.102317
10.1007/s11042-022-13440-8
10.1108/978-1-83797-957-820241008
10.1038/s41598-025-93447-x
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics14163275
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A853731240
10_3390_electronics14163275
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-dc352d97958bd951dc702ecf02e19545f2f6fe1e6e2b3136b8f64c53ea254c903
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557518300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Nov 01 14:58:59 EDT 2025
Tue Nov 04 18:11:37 EST 2025
Sat Nov 29 07:17:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-dc352d97958bd951dc702ecf02e19545f2f6fe1e6e2b3136b8f64c53ea254c903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7097-356X
OpenAccessLink https://www.proquest.com/docview/3244012864?pq-origsite=%requestingapplication%
PQID 3244012864
PQPubID 2032404
ParticipantIDs proquest_journals_3244012864
gale_infotracacademiconefile_A853731240
crossref_primary_10_3390_electronics14163275
PublicationCentury 2000
PublicationDate 2025-08-18
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ahmed (ref_9) 2024; 6
Saleem (ref_17) 2022; 23
Goumopoulos (ref_6) 2024; 12
Tahir (ref_25) 2025; 3
Arif (ref_23) 2023; 11
Mancy (ref_7) 2025; 13
ref_10
ref_31
Mehta (ref_3) 2023; 12
Das (ref_26) 2024; 12
Bhatnagar (ref_27) 2025; 19
He (ref_14) 2023; 150
Mishra (ref_21) 2024; 83
AlShahrani (ref_28) 2021; 12
Kumar (ref_22) 2024; 135
Mhamdi (ref_30) 2024; 225
Ji (ref_16) 2024; 64
Rehan (ref_1) 2023; 5
Li (ref_8) 2023; 133
Nayak (ref_15) 2023; 82
ref_24
ref_20
Shabbir (ref_11) 2024; 12
Asavisanu (ref_12) 2025; 74
Mahmood (ref_2) 2024; 3
Sani (ref_13) 2024; 7
Ajao (ref_19) 2023; 18
ref_29
Fadhel (ref_4) 2024; 107
AlJamal (ref_18) 2024; 43
ref_5
References_xml – volume: 43
  start-page: 101019
  year: 2024
  ident: ref_18
  article-title: Optimizing risk mitigation: A simulation-based model for detecting fake IoT clients in smart city environments
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 12
  start-page: 35947
  year: 2024
  ident: ref_11
  article-title: Smart city traffic management: Acoustic-based vehicle detection using stacking-based ensemble deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3370867
– volume: 3
  start-page: 100063
  year: 2025
  ident: ref_25
  article-title: A novel approach for handling missing data to enhance network intrusion detection system
  publication-title: Cyber Secur. Appl.
  doi: 10.1016/j.csa.2024.100063
– volume: 13
  start-page: 48758
  year: 2025
  ident: ref_7
  article-title: SwinIoT: A hierarchical transformer-based framework for behavioral anomaly detection in IoT-Driven smart cities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3551207
– volume: 19
  start-page: 100470
  year: 2025
  ident: ref_27
  article-title: Using crafted features and polar bear optimization algorithm for short-term electric load forecast system
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2025.100470
– volume: 135
  start-page: 1329
  year: 2024
  ident: ref_22
  article-title: An advance encryption and attack detection framework for securing smart cities data in blockchain using deep learning approach
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-024-11050-1
– volume: 150
  start-page: 104089
  year: 2023
  ident: ref_14
  article-title: Autonomous anomaly detection on traffic flow time series with reinforcement learning
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2023.104089
– volume: 83
  start-page: 22609
  year: 2024
  ident: ref_21
  article-title: Hybrid deep learning algorithm for smart cities security enhancement through blockchain and internet of things
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16406-6
– volume: 11
  start-page: 133717
  year: 2023
  ident: ref_23
  article-title: A deep reinforcement learning framework to evade black-box machine learning based IoT malware detectors using GAN-generated influential features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3334645
– ident: ref_29
  doi: 10.3390/math12233823
– volume: 5
  start-page: 1
  year: 2023
  ident: ref_1
  article-title: Internet of Things (IoT) in smart cities: Enhancing urban living through technology
  publication-title: J. Eng. Technol.
– volume: 12
  start-page: 4015
  year: 2024
  ident: ref_6
  article-title: Smart city middleware: A survey and a conceptual framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3349376
– volume: 74
  start-page: 10092
  year: 2025
  ident: ref_12
  article-title: CATS: A Framework for Cooperative Autonomy Trust & Security
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2025.3546194
– volume: 7
  start-page: 107
  year: 2024
  ident: ref_13
  article-title: Bids: Blockchain-enabled intrusion detection system in smart cities
  publication-title: IEEE Internet Things Mag.
  doi: 10.1109/IOTM.001.2300191
– volume: 23
  start-page: 417
  year: 2022
  ident: ref_17
  article-title: Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2022.03.003
– volume: 12
  start-page: 91187
  year: 2024
  ident: ref_26
  article-title: A Novel Feature Encoding Scheme for Machine Learning Based Malware Detection Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3420080
– volume: 12
  start-page: 643
  year: 2023
  ident: ref_3
  article-title: Securing the future: A comprehensive review of security challenges and solutions in advanced driver assistance systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3347200
– ident: ref_20
  doi: 10.1038/s41598-025-88843-2
– volume: 6
  start-page: 180
  year: 2024
  ident: ref_9
  article-title: Securing smart cities through machine learning: A honeypot-driven approach to attack detection in Internet of Things ecosystems
  publication-title: IET Smart Cities
  doi: 10.1049/smc2.12084
– volume: 12
  start-page: 1215
  year: 2021
  ident: ref_28
  article-title: Classification of cyber-attack using Adaboost regression classifier and securing the network
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 3
  start-page: 297
  year: 2024
  ident: ref_2
  article-title: Conducting In-Depth Analysis of AI, IoT, Web Technology, Cloud Computing, and Enterprise Systems Integration for Enhancing Data Security and Governance to Promote Sustainable Business Practices
  publication-title: J. Inf. Technol. Inform.
– volume: 64
  start-page: 103650
  year: 2024
  ident: ref_16
  article-title: A hybrid evolutionary and machine learning approach for smart city planning: Digital twin approach
  publication-title: Sustain. Energy Technol. Assess.
– volume: 133
  start-page: 109955
  year: 2023
  ident: ref_8
  article-title: Evolutionary computation-based machine learning for smart city high-dimensional big data analytics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109955
– volume: 225
  start-page: 103868
  year: 2024
  ident: ref_30
  article-title: Securing SDN: Hybrid autoencoder-random forest for intrusion detection and attack mitigation
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2024.103868
– ident: ref_31
  doi: 10.3390/app132413310
– ident: ref_5
  doi: 10.1038/s41598-024-55928-3
– volume: 107
  start-page: 102317
  year: 2024
  ident: ref_4
  article-title: Comprehensive systematic review of information fusion methods in smart cities and urban environments
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102317
– volume: 82
  start-page: 3931
  year: 2023
  ident: ref_15
  article-title: Ml-mds: Machine learning based misbehavior detection system for cognitive software-defined multimedia vanets (csdmv) in smart cities
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13440-8
– volume: 18
  start-page: 200216
  year: 2023
  ident: ref_19
  article-title: Secure edge computing vulnerabilities in smart cities sustainability using petri net and genetic algorithm-based reinforcement learning
  publication-title: Intell. Syst. Appl.
– ident: ref_10
  doi: 10.1108/978-1-83797-957-820241008
– ident: ref_24
  doi: 10.1038/s41598-025-93447-x
SSID ssj0000913830
Score 2.3280203
Snippet As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3275
SubjectTerms Accuracy
Algorithms
Automation
Classification
Cybersecurity
Cyberterrorism
Data integrity
Data security
Datasets
Decision making
Decision trees
Digital twins
Discriminant analysis
Ensemble learning
Feature selection
Fraud
Information management
Intrusion detection systems
Learning strategies
Machine learning
Mathematical optimization
Multilayer perceptrons
Noise prediction
Optimization
Polar bear
Polar bears
Regression models
Sensors
Smart cities
Traffic congestion
Traffic flow
Title Advanced Cybersecurity Framework for Detecting Fake Data Using Optimized Feature Selection and Stacked Ensemble Learning
URI https://www.proquest.com/docview/3244012864
Volume 14
WOSCitedRecordID wos001557518300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3x0UM5FPqBui1d-VCJSyOS2Pk6oQV2RQ9sI9pKtJfIdsYIUQJsQlV66G_vTNZbOKBeuOSQyEqiZ4-fPeP3AN6rxGmWHQswitjCTFEcNIkJFDptoqLQkXG92UQ2neYnJ0XpN9xaX1a5iIl9oK4vLe-R79DErziYpmr36jpg1yjOrnoLjWVYZZUEtm4ok-__9lhY8zKX4VxsSNLqfufOW6aNmIrEXF94b0J6OCz3c81k_bFfuQHPPMsUo3m3eA5L2LyAtXvagy_h18hn_8X-rSEO6H3sxGRRrSWIzooD5CQDNRATfY7iQHda9FUG4hPFmouz39SeWeTNDMXn_rcJZ6GbWhCLpQBRi3HT4oX5gcIruZ6-gq-T8Zf9w8DbMARWRrILakskrS6yIslNTYSstlkYo3V0Ybm4xMUudRhhirGhBqnJXapsIlHT4tMWodyEleaywdcgtM6Ucpk0uU4VWsmnU8LUmJB6C-owGsCHBRbV1Vxto6JVCkNXPQDdALYZr4rHYjfTVvsjBfQyVrWqRsRFMkkMJhzA1gKvyg_StroD683_H7-FpzHb_rISbr4FK93sBt_BE_uzO2tnQ1jdG0_L4yEsH_0ZD_seSPfKj0flt7-qY-fw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwKF9FLC3gA4gLUZPY-TpUaNXtqqu2y0oUqZxS2xlXFTQtm_SLH8VvZCab0B4qbj1wySVyotgvM8_2-D2AdypymmXHPAwCtjBTFAdNZDyFTpsgy3RgXGM2kUwm6f5-Nl2A391ZGC6r7GJiE6iLE8tr5GuU-BUH01h9Ov3psWsU7652FhpzWGzj1QVN2ar18ZDG930Yjjb3Nra81lXAszKQtVdY4hxFlmRRagriF4VN_BCtowurn0UudLHDAGMMDTWITepiZSOJmuZSNvMlPfceLCoGew8Wp-Pd6be_qzqssplKfy5vJGXmr1272VQBk5-QKxpvpMDbE0GT3UaP_7d-eQJLLY8Wgznwn8ICls_g0Q11xedwOWjrG8TGlSGW2zr1iVFXjyaIsIsh8jYKNRAj_R3FUNdaNHUU4jNF0-OjX9SeefLZDMWXppsJyUKXhSCeTiGwEJtlhcfmB4pWq_ZwGb7eyae_gF55UuJLEFonSrlEmlTHCq3k8zd-bIxP_wNqP-jDx27s89O5nkhO8zCGSn4LVPrwgfGRc7SpZ9rq9tAEvYx1u_IBsa1EEkfz-7Da4SNvw1CVX4Pj1b9vv4UHW3u7O_nOeLK9Ag9DNjlm3d90FXr17Axfw317Xh9Vszct4gUc3DWY_gBR80Ge
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA9QAut2FKoD0VciDaJna8DQqtuI6qiZSVAqrgE2xlXFTRtN-kXP41fx0w2oT1U3HrgkkvkRHGeZ57t8XsAWypymmXHPAwCtjBTFAdNZDyFTpsgy3RgXGs2kUwm6f5-Nl2A3_1ZGC6r7GNiG6jLY8tr5ENK_IqDaayGriuLmI7z9yenHjtI8U5rb6cxh8geXl3Q9K1-tzumf_06DPOdL9sfvM5hwLMykI1XWuIfZZZkUWpK4hqlTfwQraMLK6FFLnSxwwBjDA01iE3qYmUjiZrmVTbzJT33HtxPaI7J5YTT6Nvf9R3W20ylPxc6kjLzh9e-NnXANCjk2sYbyfD2lNDmufzJ_9xDy_C4Y9diNB8OK7CA1VNYuqG5-AwuR13Vg9i-MsR9O_8-kfdVaoJovBgjb65QA5HrHyjGutGira4QnyjGHh3-ovbMns9mKD63XU74FroqBbF3Coyl2KlqPDI_UXQKtger8PVOPn0NFqvjCp-D0DpRyiXSpDpWaCWfyvFjY3waJaj9YABvexwUJ3OVkYJmZwyb4hbYDOANY6XgGNTMtNXdUQp6Gat5FSPiYIkk5uYPYKPHStEFp7q4Bsr6v29vwkNCUPFxd7L3Ah6F7HzMYsDpBiw2szN8CQ_seXNYz1610Bfw_a6R9AfWnUkB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Cybersecurity+Framework+for+Detecting+Fake+Data+Using+Optimized+Feature+Selection+and+Stacked+Ensemble+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Alajlan%2C+Abrar+M.&rft.date=2025-08-18&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=16&rft.spage=3275&rft_id=info:doi/10.3390%2Felectronics14163275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics14163275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon