Advanced Cybersecurity Framework for Detecting Fake Data Using Optimized Feature Selection and Stacked Ensemble Learning
As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 14; číslo 16; s. 3275 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
18.08.2025
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection model was designed by combining an advanced feature selection method with a robust ensemble classification framework. Initially, the raw data are eliminated by performing normalization, feature transformation, and noise filtering that enhances the reliability of the model. The dimensionality issues are mitigated by eliminating redundant features via the proposed Elite Tuning Strategy-Enhanced Polar Bear Optimization algorithm. It simulates the hunting behavior of polar bears, balancing exploration and exploitation features. The proposed Stacking Ensemble-based Random AdaBoost Quadratic Discriminant model leverages the merits of diverse base learners, including AdaBoost, Quadratic Discriminant Analysis, and Random Forest, that classify the feature subset and the integration of prediction processes with a meta-feature vector-processed meta-classifier such as a multilayer perceptron or logistic regression model that predicts the final outcome. This hierarchical architecture validates resilience against noise and improves generalization and prediction accuracy. Thus, the experimental results show that the proposed method outperforms existing approaches in terms of accuracy, precision, and latency, yielding values of 98.78%, 98.75%, and 16 ms, respectively, using the UNSW-NB15 dataset. |
|---|---|
| AbstractList | As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data deteriorate the process and have impacts on decision-making systems and predictive analytics. Hence, an effective and intelligent fake data detection model was designed by combining an advanced feature selection method with a robust ensemble classification framework. Initially, the raw data are eliminated by performing normalization, feature transformation, and noise filtering that enhances the reliability of the model. The dimensionality issues are mitigated by eliminating redundant features via the proposed Elite Tuning Strategy-Enhanced Polar Bear Optimization algorithm. It simulates the hunting behavior of polar bears, balancing exploration and exploitation features. The proposed Stacking Ensemble-based Random AdaBoost Quadratic Discriminant model leverages the merits of diverse base learners, including AdaBoost, Quadratic Discriminant Analysis, and Random Forest, that classify the feature subset and the integration of prediction processes with a meta-feature vector-processed meta-classifier such as a multilayer perceptron or logistic regression model that predicts the final outcome. This hierarchical architecture validates resilience against noise and improves generalization and prediction accuracy. Thus, the experimental results show that the proposed method outperforms existing approaches in terms of accuracy, precision, and latency, yielding values of 98.78%, 98.75%, and 16 ms, respectively, using the UNSW-NB15 dataset. |
| Audience | Academic |
| Author | Alajlan, Abrar M. |
| Author_xml | – sequence: 1 givenname: Abrar M. orcidid: 0000-0001-7097-356X surname: Alajlan fullname: Alajlan, Abrar M. |
| BookMark | eNptUUtPAjEQbowmovILvDTxjPax3d0eCYiakHhQzptud0oKbIttUfHXW8SDB2eSeX8zk5kLdOq8A4SuKbnlXJI72IBOwTurIy1oyVklTtCAkUqOJJPs9I99joYxrkgmSXnNyQB9jrt35TR0eLJvIUTQu2DTHs-C6uHDhzU2PuAppDzDuiWeqTXgqUoKL-LBf94m29uvjJ-BSrsA-OVnH-sdVq7DL0npdc7euwh9uwE8BxVcRl6hM6M2EYa_-hItZvevk8fR_PnhaTKejzSnPI06zQXrZCVF3XZS0E5XhIE2WVApCmGYKQ1QKIG1GVC2tSkLLTgoJgotCb9EN8e-2-DfdhBTs_K74PLIhrOiIJTVZZGrbo9VS7WBxjrjU1A6cwe91fnexub4uBa84pQVh7b8CNDBxxjANNtgexX2DSXN4S3NP2_h34Ddhfo |
| Cites_doi | 10.1109/ACCESS.2024.3370867 10.1016/j.csa.2024.100063 10.1109/ACCESS.2025.3551207 10.1016/j.egyai.2025.100470 10.1007/s11277-024-11050-1 10.1016/j.trc.2023.104089 10.1007/s11042-023-16406-6 10.1109/ACCESS.2023.3334645 10.3390/math12233823 10.1109/ACCESS.2023.3349376 10.1109/TVT.2025.3546194 10.1109/IOTM.001.2300191 10.1016/j.eij.2022.03.003 10.1109/ACCESS.2024.3420080 10.1109/ACCESS.2023.3347200 10.1038/s41598-025-88843-2 10.1049/smc2.12084 10.1016/j.asoc.2022.109955 10.1016/j.jnca.2024.103868 10.3390/app132413310 10.1038/s41598-024-55928-3 10.1016/j.inffus.2024.102317 10.1007/s11042-022-13440-8 10.1108/978-1-83797-957-820241008 10.1038/s41598-025-93447-x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics14163275 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A853731240 10_3390_electronics14163275 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-dc352d97958bd951dc702ecf02e19545f2f6fe1e6e2b3136b8f64c53ea254c903 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557518300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sat Nov 01 14:58:59 EDT 2025 Tue Nov 04 18:11:37 EST 2025 Sat Nov 29 07:17:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-dc352d97958bd951dc702ecf02e19545f2f6fe1e6e2b3136b8f64c53ea254c903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7097-356X |
| OpenAccessLink | https://www.proquest.com/docview/3244012864?pq-origsite=%requestingapplication% |
| PQID | 3244012864 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_3244012864 gale_infotracacademiconefile_A853731240 crossref_primary_10_3390_electronics14163275 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-18 |
| PublicationDateYYYYMMDD | 2025-08-18 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ahmed (ref_9) 2024; 6 Saleem (ref_17) 2022; 23 Goumopoulos (ref_6) 2024; 12 Tahir (ref_25) 2025; 3 Arif (ref_23) 2023; 11 Mancy (ref_7) 2025; 13 ref_10 ref_31 Mehta (ref_3) 2023; 12 Das (ref_26) 2024; 12 Bhatnagar (ref_27) 2025; 19 He (ref_14) 2023; 150 Mishra (ref_21) 2024; 83 AlShahrani (ref_28) 2021; 12 Kumar (ref_22) 2024; 135 Mhamdi (ref_30) 2024; 225 Ji (ref_16) 2024; 64 Rehan (ref_1) 2023; 5 Li (ref_8) 2023; 133 Nayak (ref_15) 2023; 82 ref_24 ref_20 Shabbir (ref_11) 2024; 12 Asavisanu (ref_12) 2025; 74 Mahmood (ref_2) 2024; 3 Sani (ref_13) 2024; 7 Ajao (ref_19) 2023; 18 ref_29 Fadhel (ref_4) 2024; 107 AlJamal (ref_18) 2024; 43 ref_5 |
| References_xml | – volume: 43 start-page: 101019 year: 2024 ident: ref_18 article-title: Optimizing risk mitigation: A simulation-based model for detecting fake IoT clients in smart city environments publication-title: Sustain. Comput. Inform. Syst. – volume: 12 start-page: 35947 year: 2024 ident: ref_11 article-title: Smart city traffic management: Acoustic-based vehicle detection using stacking-based ensemble deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3370867 – volume: 3 start-page: 100063 year: 2025 ident: ref_25 article-title: A novel approach for handling missing data to enhance network intrusion detection system publication-title: Cyber Secur. Appl. doi: 10.1016/j.csa.2024.100063 – volume: 13 start-page: 48758 year: 2025 ident: ref_7 article-title: SwinIoT: A hierarchical transformer-based framework for behavioral anomaly detection in IoT-Driven smart cities publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3551207 – volume: 19 start-page: 100470 year: 2025 ident: ref_27 article-title: Using crafted features and polar bear optimization algorithm for short-term electric load forecast system publication-title: Energy AI doi: 10.1016/j.egyai.2025.100470 – volume: 135 start-page: 1329 year: 2024 ident: ref_22 article-title: An advance encryption and attack detection framework for securing smart cities data in blockchain using deep learning approach publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-024-11050-1 – volume: 150 start-page: 104089 year: 2023 ident: ref_14 article-title: Autonomous anomaly detection on traffic flow time series with reinforcement learning publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2023.104089 – volume: 83 start-page: 22609 year: 2024 ident: ref_21 article-title: Hybrid deep learning algorithm for smart cities security enhancement through blockchain and internet of things publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16406-6 – volume: 11 start-page: 133717 year: 2023 ident: ref_23 article-title: A deep reinforcement learning framework to evade black-box machine learning based IoT malware detectors using GAN-generated influential features publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3334645 – ident: ref_29 doi: 10.3390/math12233823 – volume: 5 start-page: 1 year: 2023 ident: ref_1 article-title: Internet of Things (IoT) in smart cities: Enhancing urban living through technology publication-title: J. Eng. Technol. – volume: 12 start-page: 4015 year: 2024 ident: ref_6 article-title: Smart city middleware: A survey and a conceptual framework publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3349376 – volume: 74 start-page: 10092 year: 2025 ident: ref_12 article-title: CATS: A Framework for Cooperative Autonomy Trust & Security publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2025.3546194 – volume: 7 start-page: 107 year: 2024 ident: ref_13 article-title: Bids: Blockchain-enabled intrusion detection system in smart cities publication-title: IEEE Internet Things Mag. doi: 10.1109/IOTM.001.2300191 – volume: 23 start-page: 417 year: 2022 ident: ref_17 article-title: Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2022.03.003 – volume: 12 start-page: 91187 year: 2024 ident: ref_26 article-title: A Novel Feature Encoding Scheme for Machine Learning Based Malware Detection Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3420080 – volume: 12 start-page: 643 year: 2023 ident: ref_3 article-title: Securing the future: A comprehensive review of security challenges and solutions in advanced driver assistance systems publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3347200 – ident: ref_20 doi: 10.1038/s41598-025-88843-2 – volume: 6 start-page: 180 year: 2024 ident: ref_9 article-title: Securing smart cities through machine learning: A honeypot-driven approach to attack detection in Internet of Things ecosystems publication-title: IET Smart Cities doi: 10.1049/smc2.12084 – volume: 12 start-page: 1215 year: 2021 ident: ref_28 article-title: Classification of cyber-attack using Adaboost regression classifier and securing the network publication-title: Turk. J. Comput. Math. Educ. – volume: 3 start-page: 297 year: 2024 ident: ref_2 article-title: Conducting In-Depth Analysis of AI, IoT, Web Technology, Cloud Computing, and Enterprise Systems Integration for Enhancing Data Security and Governance to Promote Sustainable Business Practices publication-title: J. Inf. Technol. Inform. – volume: 64 start-page: 103650 year: 2024 ident: ref_16 article-title: A hybrid evolutionary and machine learning approach for smart city planning: Digital twin approach publication-title: Sustain. Energy Technol. Assess. – volume: 133 start-page: 109955 year: 2023 ident: ref_8 article-title: Evolutionary computation-based machine learning for smart city high-dimensional big data analytics publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109955 – volume: 225 start-page: 103868 year: 2024 ident: ref_30 article-title: Securing SDN: Hybrid autoencoder-random forest for intrusion detection and attack mitigation publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2024.103868 – ident: ref_31 doi: 10.3390/app132413310 – ident: ref_5 doi: 10.1038/s41598-024-55928-3 – volume: 107 start-page: 102317 year: 2024 ident: ref_4 article-title: Comprehensive systematic review of information fusion methods in smart cities and urban environments publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102317 – volume: 82 start-page: 3931 year: 2023 ident: ref_15 article-title: Ml-mds: Machine learning based misbehavior detection system for cognitive software-defined multimedia vanets (csdmv) in smart cities publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13440-8 – volume: 18 start-page: 200216 year: 2023 ident: ref_19 article-title: Secure edge computing vulnerabilities in smart cities sustainability using petri net and genetic algorithm-based reinforcement learning publication-title: Intell. Syst. Appl. – ident: ref_10 doi: 10.1108/978-1-83797-957-820241008 – ident: ref_24 doi: 10.1038/s41598-025-93447-x |
| SSID | ssj0000913830 |
| Score | 2.3280203 |
| Snippet | As smart cities continue to generate vast quantities of data, data integrity is increasingly threatened by instances of fraud. Anomalous or fake data... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3275 |
| SubjectTerms | Accuracy Algorithms Automation Classification Cybersecurity Cyberterrorism Data integrity Data security Datasets Decision making Decision trees Digital twins Discriminant analysis Ensemble learning Feature selection Fraud Information management Intrusion detection systems Learning strategies Machine learning Mathematical optimization Multilayer perceptrons Noise prediction Optimization Polar bear Polar bears Regression models Sensors Smart cities Traffic congestion Traffic flow |
| Title | Advanced Cybersecurity Framework for Detecting Fake Data Using Optimized Feature Selection and Stacked Ensemble Learning |
| URI | https://www.proquest.com/docview/3244012864 |
| Volume | 14 |
| WOSCitedRecordID | wos001557518300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3x0UM5FPqBui1d-VCJSyOS2Pk6oQV2RQ9sI9pKtJfIdsYIUQJsQlV66G_vTNZbOKBeuOSQyEqiZ4-fPeP3AN6rxGmWHQswitjCTFEcNIkJFDptoqLQkXG92UQ2neYnJ0XpN9xaX1a5iIl9oK4vLe-R79DErziYpmr36jpg1yjOrnoLjWVYZZUEtm4ok-__9lhY8zKX4VxsSNLqfufOW6aNmIrEXF94b0J6OCz3c81k_bFfuQHPPMsUo3m3eA5L2LyAtXvagy_h18hn_8X-rSEO6H3sxGRRrSWIzooD5CQDNRATfY7iQHda9FUG4hPFmouz39SeWeTNDMXn_rcJZ6GbWhCLpQBRi3HT4oX5gcIruZ6-gq-T8Zf9w8DbMARWRrILakskrS6yIslNTYSstlkYo3V0Ybm4xMUudRhhirGhBqnJXapsIlHT4tMWodyEleaywdcgtM6Ucpk0uU4VWsmnU8LUmJB6C-owGsCHBRbV1Vxto6JVCkNXPQDdALYZr4rHYjfTVvsjBfQyVrWqRsRFMkkMJhzA1gKvyg_StroD683_H7-FpzHb_rISbr4FK93sBt_BE_uzO2tnQ1jdG0_L4yEsH_0ZD_seSPfKj0flt7-qY-fw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwKF9FLC3gA4gLUZPY-TpUaNXtqqu2y0oUqZxS2xlXFTQtm_SLH8VvZCab0B4qbj1wySVyotgvM8_2-D2AdypymmXHPAwCtjBTFAdNZDyFTpsgy3RgXGM2kUwm6f5-Nl2A391ZGC6r7GJiE6iLE8tr5GuU-BUH01h9Ov3psWsU7652FhpzWGzj1QVN2ar18ZDG930Yjjb3Nra81lXAszKQtVdY4hxFlmRRagriF4VN_BCtowurn0UudLHDAGMMDTWITepiZSOJmuZSNvMlPfceLCoGew8Wp-Pd6be_qzqssplKfy5vJGXmr1272VQBk5-QKxpvpMDbE0GT3UaP_7d-eQJLLY8Wgznwn8ICls_g0Q11xedwOWjrG8TGlSGW2zr1iVFXjyaIsIsh8jYKNRAj_R3FUNdaNHUU4jNF0-OjX9SeefLZDMWXppsJyUKXhSCeTiGwEJtlhcfmB4pWq_ZwGb7eyae_gF55UuJLEFonSrlEmlTHCq3k8zd-bIxP_wNqP-jDx27s89O5nkhO8zCGSn4LVPrwgfGRc7SpZ9rq9tAEvYx1u_IBsa1EEkfz-7Da4SNvw1CVX4Pj1b9vv4UHW3u7O_nOeLK9Ag9DNjlm3d90FXr17Axfw317Xh9Vszct4gUc3DWY_gBR80Ge |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA9QAut2FKoD0VciDaJna8DQqtuI6qiZSVAqrgE2xlXFTRtN-kXP41fx0w2oT1U3HrgkkvkRHGeZ57t8XsAWypymmXHPAwCtjBTFAdNZDyFTpsgy3RgXGs2kUwm6f5-Nl2A3_1ZGC6r7GNiG6jLY8tr5ENK_IqDaayGriuLmI7z9yenHjtI8U5rb6cxh8geXl3Q9K1-tzumf_06DPOdL9sfvM5hwLMykI1XWuIfZZZkUWpK4hqlTfwQraMLK6FFLnSxwwBjDA01iE3qYmUjiZrmVTbzJT33HtxPaI7J5YTT6Nvf9R3W20ylPxc6kjLzh9e-NnXANCjk2sYbyfD2lNDmufzJ_9xDy_C4Y9diNB8OK7CA1VNYuqG5-AwuR13Vg9i-MsR9O_8-kfdVaoJovBgjb65QA5HrHyjGutGira4QnyjGHh3-ovbMns9mKD63XU74FroqBbF3Coyl2KlqPDI_UXQKtger8PVOPn0NFqvjCp-D0DpRyiXSpDpWaCWfyvFjY3waJaj9YABvexwUJ3OVkYJmZwyb4hbYDOANY6XgGNTMtNXdUQp6Gat5FSPiYIkk5uYPYKPHStEFp7q4Bsr6v29vwkNCUPFxd7L3Ah6F7HzMYsDpBiw2szN8CQ_seXNYz1610Bfw_a6R9AfWnUkB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Cybersecurity+Framework+for+Detecting+Fake+Data+Using+Optimized+Feature+Selection+and+Stacked+Ensemble+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Alajlan%2C+Abrar+M.&rft.date=2025-08-18&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=16&rft.spage=3275&rft_id=info:doi/10.3390%2Felectronics14163275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics14163275 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |