Encoder-Decoder Based LSTM Model to Advance User QoE in 360-Degree Video

The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be addressed to obtain the user's Quality-of-Experience (QoE). 360-degree videos have already taken up the user's behavior by storm....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 71; číslo 2; s. 2617 - 2631
Hlavní autoři: Usman Younus, Muhammad, Shafi, Rabia, Rafiq, Ammar, Rizwan Anjum, Muhammad, Afridi, Sharjeel, Aleem Jamali, Abdul, Ali Arain, Zulfiqar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2022
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be addressed to obtain the user's Quality-of-Experience (QoE). 360-degree videos have already taken up the user's behavior by storm. However, the users only focus on the part of 360-degree videos, known as a viewport. Despite the immense hype, 360-degree videos convey a loathsome side effect about viewport prediction, making viewers feel uncomfortable because user viewport needs to be pre-fetched in advance. Ideally, we can minimize the bandwidth consumption if we know what the user motion in advance. Looking into the problem definition, we propose an Encoder-Decoder based Long-Short Term Memory (LSTM) model to more accurately capture the non-linear relationship between past and future viewport positions. This model takes the transforming data instead of taking the direct input to predict the future user movement. Then, this prediction model is combined with a rate adaptation approach that assigns the bitrates to various tiles for 360-degree video frames under a given network capacity. Hence, our proposed work aims to facilitate improved system performance when QoE parameters are jointly optimized. Some experiments were carried out and compared with existing work to prove the performance of the proposed model. Last but not least, the experiments implementation of our proposed work provides high user's QoE than its competitors.
AbstractList The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be addressed to obtain the user's Quality-of-Experience (QoE). 360-degree videos have already taken up the user's behavior by storm. However, the users only focus on the part of 360-degree videos, known as a viewport. Despite the immense hype, 360-degree videos convey a loathsome side effect about viewport prediction, making viewers feel uncomfortable because user viewport needs to be pre-fetched in advance. Ideally, we can minimize the bandwidth consumption if we know what the user motion in advance. Looking into the problem definition, we propose an Encoder-Decoder based Long-Short Term Memory (LSTM) model to more accurately capture the non-linear relationship between past and future viewport positions. This model takes the transforming data instead of taking the direct input to predict the future user movement. Then, this prediction model is combined with a rate adaptation approach that assigns the bitrates to various tiles for 360-degree video frames under a given network capacity. Hence, our proposed work aims to facilitate improved system performance when QoE parameters are jointly optimized. Some experiments were carried out and compared with existing work to prove the performance of the proposed model. Last but not least, the experiments implementation of our proposed work provides high user's QoE than its competitors.
Author Aleem Jamali, Abdul
Rizwan Anjum, Muhammad
Rafiq, Ammar
Afridi, Sharjeel
Ali Arain, Zulfiqar
Usman Younus, Muhammad
Shafi, Rabia
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Usman Younus
  fullname: Usman Younus, Muhammad
– sequence: 2
  givenname: Rabia
  surname: Shafi
  fullname: Shafi, Rabia
– sequence: 3
  givenname: Ammar
  surname: Rafiq
  fullname: Rafiq, Ammar
– sequence: 4
  givenname: Muhammad
  surname: Rizwan Anjum
  fullname: Rizwan Anjum, Muhammad
– sequence: 5
  givenname: Sharjeel
  surname: Afridi
  fullname: Afridi, Sharjeel
– sequence: 6
  givenname: Abdul
  surname: Aleem Jamali
  fullname: Aleem Jamali, Abdul
– sequence: 7
  givenname: Zulfiqar
  surname: Ali Arain
  fullname: Ali Arain, Zulfiqar
BookMark eNp1kM1Lw0AQxRepYFu9e1zwnLpf2STHWlsrtIjYel02m4mkpLt1NxX8710bDyJ4GN7M8Hsz8EZoYJ0FhK4pmXAmibg1ezNhhLFJLMblGRrSVMgkDnLwq79AoxB2hHDJCzJEy7k1rgKf3MNJ8Z0OUOHVy2aN13HR4s7hafWhrQG8DRF4dnPcWMwliZ43D4BfmwrcJTqvdRvg6kfHaLuYb2bLZPX08DibrhLDKe-SSqS8KCWBrKYFSaVmJeg8Z8JIyEpBc8YzXZiiIKaUTEBd1iIyxKSM6oynfIxu-rsH796PEDq1c0dv40vFJE1lLjjPIiV7yngXgodamabTXeNs53XTKkrUKTUVU1Pfqak-tWgkf4wH3-y1__zf8gW7Om3t
CitedBy_id crossref_primary_10_1155_2022_6032255
Cites_doi 10.1145/3362101
10.3390/sym12091491
10.1109/ACCESS.2020.3046693
10.1109/TPAMI.2018.2858783
10.1109/TNSM.2021.3053183
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.32604/cmc.2022.022236
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2631
ExternalDocumentID 10_32604_cmc_2022_022236
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-d4539b60e7f19056a2bea8824c6e7b418237a9c990cb624efbf4a2b0c521a7353
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000729728900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 06:00:28 EST 2025
Sat Nov 29 03:13:21 EST 2025
Tue Nov 18 22:23:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-d4539b60e7f19056a2bea8824c6e7b418237a9c990cb624efbf4a2b0c521a7353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2615684337?pq-origsite=%requestingapplication%
PQID 2615684337
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2615684337
crossref_citationtrail_10_32604_cmc_2022_022236
crossref_primary_10_32604_cmc_2022_022236
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Nguyen (ref11) 2018
Kan (ref16) 2021; 31
Park (ref12) 2021; 18
Xie (ref27) 2017
Goodfellow (ref24) 2016; 1
ref1
Shafi (ref30) 2020
Jiang (ref5) 2018
Jiang (ref23) 2017
Qian (ref26) 2018
Jun (ref18) 2019
Tang (ref4) 2020
He (ref2) 2018
Wu (ref20) 2016
Younus (ref14) 2020; 9
Lo (ref21) 2017
Qian (ref28) 2015
Kan (ref19) 2019
Park (ref25) 2021
Hooft (ref3) 2019; 15
Xu (ref13) 2018; 41
Xie (ref6) 2017
Younus (ref15) 2021; 10
Bao (ref22) 2016
Nasrabadi (ref7) 2017
Younus (ref17) 2020
Zhang (ref8) 2019
Shafi (ref29) 2020; 12
Chopra (ref9) 2021
Aladagli (ref10) 2017
References_xml – start-page: 1
  year: 2020
  ident: ref4
  article-title: A viewport prediction framework for panoramic videos
– ident: ref1
– start-page: 393
  year: 2018
  ident: ref5
  article-title: Plato: Learning-based adaptive streaming of 360-degree videos
– start-page: 1252
  year: 2019
  ident: ref8
  article-title: DRL360: 360-degree video streaming with deep reinforcement learning
– volume: 15
  start-page: 1
  year: 2019
  ident: ref3
  article-title: Tile-based adaptive streaming for virtual reality video
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
  doi: 10.1145/3362101
– start-page: 211
  year: 2017
  ident: ref21
  article-title: 360 video viewing dataset in head-mounted virtual reality
– volume: 10
  start-page: 14546
  year: 2021
  ident: ref15
  article-title: Improving the software defined wireless sensor networks routing performance using reinforcement learning
  publication-title: IEEE Internet of Things Journal
– start-page: 1
  year: 2017
  ident: ref10
  article-title: Predicting head trajectories in 360 virtual reality videos
– start-page: 1839
  year: 2021
  ident: ref25
  article-title: Adaptive streaming of 360-degree videos with reinforcement learning
– volume: 31
  start-page: 3631
  year: 2021
  ident: ref16
  article-title: RAPT360: Reinforcement learning-based rate adaptation for 360-degree video streaming with adaptive prediction and tiling
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 12
  start-page: 1
  year: 2020
  ident: ref29
  article-title: 360-degree video streaming: A survey of the state of the art
  publication-title: Symmetry
  doi: 10.3390/sym12091491
– start-page: 1868
  year: 2020
  ident: ref30
  article-title: MTC360: A multi-tiles configuration for viewport-dependent 360-gegree video streaming
– volume: 9
  start-page: 259
  year: 2020
  ident: ref14
  article-title: Optimizing the lifetime of software defined wireless sensor network via reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046693
– start-page: 290
  year: 2019
  ident: ref18
  article-title: 360SRL: A sequential reinforcement learning approach for ABR tile-based 360 video streaming
– start-page: 315
  year: 2017
  ident: ref6
  article-title: 360probdash: Improving lSTM of 360 video streaming using tile-based http adaptive streaming
– volume: 41
  start-page: 2693
  year: 2018
  ident: ref13
  article-title: Predicting head movement in panoramic video: A deep reinforcement learning approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2858783
– volume: 1
  year: 2016
  ident: ref24
  publication-title: Deep Learning
– start-page: 1
  year: 2016
  ident: ref20
  article-title: Video saliency prediction with optimized optical flow and gravity center bias
– start-page: 1161
  year: 2016
  ident: ref22
  article-title: Shooting a moving target: Motion-prediction-based transmission for 360-degree videos
– start-page: 315
  year: 2017
  ident: ref27
  article-title: 360 probdash: Improving QoE of 360 video streaming using tile-based http adaptive streaming
– start-page: 1689
  year: 2017
  ident: ref7
  article-title: Adaptive 360-degree video streaming using scalable video coding
– volume: 18
  start-page: 1000
  year: 2021
  ident: ref12
  article-title: Mosaic: Advancing user quality of experience in 360-degree video streaming with machine learning
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2021.3053183
– start-page: 2379
  year: 2021
  ident: ref9
  article-title: PARIMA: Viewport adaptive 360-degree video streaming
– start-page: 1190
  year: 2018
  ident: ref11
  article-title: Your attention is unique: Detecting 360-degree video saliency in head-mounted display for head movement prediction
– start-page: 4030
  year: 2019
  ident: ref19
  article-title: Deep reinforcement learning-based rate adaptation for adaptive 360-degree video streaming
– start-page: 482
  year: 2018
  ident: ref2
  article-title: Rubiks: Practical 360-degree streaming for smartphones
– start-page: 1
  year: 2015
  ident: ref28
  article-title: Optimizing 360 video delivery over cellular networks
– year: 2020
  ident: ref17
  publication-title: Contribution to energy optimization in WSN: Routing based on RL and SDN oriented routing
– start-page: 658
  year: 2017
  ident: ref23
  article-title: A hybrid algorithm of adaptive particle swarm optimization based on adaptive moment estimation method
– start-page: 99
  year: 2018
  ident: ref26
  article-title: Flare: Practical viewport-adaptive 360-degree video streaming for mobile devices
SSID ssj0036390
Score 2.240343
Snippet The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2617
SubjectTerms Accuracy
Adaptation
Algorithms
Bandwidths
Coders
Communications traffic
Computer engineering
Encoders-Decoders
Experiments
Machine learning
Multimedia
Prediction models
Streaming media
Video transmission
Title Encoder-Decoder Based LSTM Model to Advance User QoE in 360-Degree Video
URI https://www.proquest.com/docview/2615684337
Volume 71
WOSCitedRecordID wos000729728900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWDhjSgveWBhMA2x4yQTaiGoSG1VoEUwRbbjSJVKUtrA7-ecODwWFiYPsaMo3_m-Oz--Q-jMDRIqIPIlKtSUMKkC8IM0JFIkRgCNU0eVOrN9fzgMnp_DkV1wW9pjlbVPLB11kiuzRt6GSN_jAaPUv5q_EVM1yuyu2hIaq6hplMrAzpvdaDh6qH0xBf4tr0R6jBMX2KzaqISQxWFt9WokDF33wuQ8pUTzD2L67ZdLsrnd_O9nbqENG2biTmUX22hFZztosy7hgO2M3kW9KDOX2hfkRpct7gKrJbj_OB5gUyZthoscd6pzAngC5orv8whPM0y5A2MgWdf4aZrofA9NbqPxdY_Y4gpE0UtakIR5NJTc0X4KMYHHhSu1gHCbKa59yS6NiI0IFZCVktxlOpUpgz6OAr4XPvXoPmpkeaYPEObKDYUAT6WdgAnmSV-rkKdUa5amkvMWatd_NlZWedwUwJjFkIGUWMSARWywiCssWuj8a8S8Ut34o-9xjURs598y_obh8O_HR2jdvKtaVDlGjWLxrk_QmvoopsvFqTUnaEd3g9HLJ-Bq0Lc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2hgNReSj8FLdA9tIcetjG767V9qBCFoEQkUaqGip7M7nqMIlGbJmmr_il-I7P-AHrhxqEnH7xryX7j92a_3gC8E3EmDWW-3CUoubIuJh6UCbcm8wZoWgau8pkdRuNxfHqaTFbgqj0L47dVtpxYEXVWOj9H3qVMP9SxkjLau_zJfdUov7raltCow-IY__6hIdvi0-CQ8H0vxFFvetDnTVUB7uSuXPJMhTKxOsAoJzEMtREWDeWZymmMrNr17i0mccTSzmqhMLe5ojaBI6EzUVUlgih_Vflg78DqZDCafG-5X5LeV0cwQ6W5IPWsF0YpRQpU1_3wlolCfPRjrMoS-o4Q_qsDlbgdrf9vn-UpPGnSaLZfx_0zWMHiOay3JSpYw1gvoN8r_KH9OT_E6so-k2pnbPh1OmK-DNwFW5Zsv94HwU7od2Rfyh6bFUzqgPqczxHZt1mG5Us4eZD3eQWdoixwA5h2IjGGmBiDWBkV2ghdonOJqPLcar0J3RbJ1DXO6r7Ax0VKI6wK-5SwTz32aY39Jny46XFZu4rc03arRT5t-GWR3sL--v7bb-FRfzoapsPB-PgNPPbPrSeQtqCznP_CbVhzv5ezxXynCWUGZw8dJtcC8is1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoder-Decoder+Based+LSTM+Model+to+Advance+User+QoE+in+360-Degree+Video&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Usman+Younus%2C+Muhammad&rft.au=Shafi%2C+Rabia&rft.au=Rafiq%2C+Ammar&rft.au=Rizwan+Anjum%2C+Muhammad&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=2&rft.spage=2617&rft.epage=2631&rft_id=info:doi/10.32604%2Fcmc.2022.022236&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_022236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon