Topological Structure of the Solution Set of a Cauchy Problem for Fractional Differential Inclusions with an Upper Semicontinuous Right-Hand Side
We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of...
Saved in:
| Published in: | Doklady. Mathematics Vol. 111; no. 2; pp. 121 - 125 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Moscow
Pleiades Publishing
01.04.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1064-5624, 1531-8362 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order
in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an
-set. |
|---|---|
| AbstractList | We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order
in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an
-set. We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an -set. |
| Author | Petrosyan, G. G. |
| Author_xml | – sequence: 1 givenname: G. G. surname: Petrosyan fullname: Petrosyan, G. G. email: garikpetrosyan@yandex.ru organization: Voronezh State Pedagogical University |
| BookMark | eNp1kMtKxDAYhYOM4Hh5AHcB19Vcmky7lNFRQVCsrkuaJjMZOknNBfExfGNTRnAhZpP8Od858J9jMLPOKgDOMbrEmJZXDUa8ZJyUpOQIV4QegDlmFBcV5WSW31kuJv0IHIewRahkBKE5-Hp1oxvc2kgxwCb6JGPyCjoN40bBxg0pGmdho-L0J-BSJLn5hM_edYPaQe08XHkhJygH3BitlVc2mjw8WDmkkIUAP0zcQGHh2zgqn8N2RroM2eRSgC9mvYnFvbA9bEyvTsGhFkNQZz_3CXhb3b4u74vHp7uH5fVjISmmseh63JXTqYlgXdXVXGGmSbdAuqe1wrQSRCNRcVb3Fe4WhDCOFOkRLVG9kDU9ARf73NG796RCbLcu-bxFaCnhjDPGFjhTeE9J70LwSrejNzvhP1uM2qn59k_z2UP2npBZu1b-N_l_0zcA2ofN |
| Cites_doi | 10.1080/00036811.2011.601454 10.1080/00036811.2016.1277583 10.1134/S1995080223080243 10.1016/0022-247X(86)90347-1 10.4064/fm-64-1-91-97 10.35634/vm220305 10.1016/j.camwa.2009.06.026 10.1134/S0001434624030088 10.1515/fca-2017-0075 10.1515/9783110293562 10.1515/9783110870893 10.1134/S00122661200110014 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2025 ISSN 1064-5624, Doklady Mathematics, 2025, Vol. 111, No. 2, pp. 121–125. © Pleiades Publishing, Ltd., 2025. Pleiades Publishing, Ltd. 2025. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-5624, Doklady Mathematics, 2025, Vol. 111, No. 2, pp. 121–125. © Pleiades Publishing, Ltd., 2025. – notice: Pleiades Publishing, Ltd. 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S1064562424601823 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1531-8362 |
| EndPage | 125 |
| ExternalDocumentID | 10_1134_S1064562424601823 |
| GroupedDBID | --Z -Y2 -~X .VR 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABCQX ABDBE ABDBF ABDZT ABECU ABEFU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETEA AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFFNX AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D0L DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IZQ I~X I~Z J-C JBSCW JZLTJ KOV L7B LLZTM M2P M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PHGZM PHGZT PQGLB PT4 PTHSS QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC TUS UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VJK W23 W48 WH7 WK8 YLTOR ZMTXR AAYXX AFKRA AZQEC BENPR CITATION DWQXO GNUQQ HCIFZ |
| ID | FETCH-LOGICAL-c313t-bd1b4444492a5b8b96e15f2b70fd39e138a2f0a8659d81b722560e2d034097c93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603155600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1064-5624 |
| IngestDate | Wed Nov 26 07:57:48 EST 2025 Sat Nov 29 07:02:14 EST 2025 Tue Oct 28 02:38:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | topological structure set differential inclusion fractional derivative condensing multioperator family of cosine operator functions multivalued map |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-bd1b4444492a5b8b96e15f2b70fd39e138a2f0a8659d81b722560e2d034097c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1134/S1064562424601823.pdf |
| PQID | 3265655571 |
| PQPubID | 2043597 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3265655571 crossref_primary_10_1134_S1064562424601823 springer_journals_10_1134_S1064562424601823 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Doklady. Mathematics |
| PublicationTitleAbbrev | Dokl. Math |
| PublicationYear | 2025 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | M. I. Kamenskii (9883_CR8) 2017; 97 V. V. Filippov (9883_CR11) 1997; 33 S. Djebali (9883_CR13) 2013 G. G. Petrosyan (9883_CR4) 2022; 32 V. V. Obukhovskii (9883_CR3) 2024; 115 T. D. Ke (9883_CR7) 2013; 92 I. Podlubny (9883_CR2) 1999 A. A. Kilbas (9883_CR1) 2006 L. Górniewicz (9883_CR10) 1986; 113 L. Górniewicz (9883_CR12) 2006 M. Kamenskii (9883_CR14) 2001 D. H. Hyman (9883_CR18) 1969; 64 M. Sova (9883_CR16) 1966 Yu. G. Borisovich (9883_CR17) 2011 M. I. Gomoyunov (9883_CR6) 2020; 56 N. Aronszajn (9883_CR9) 1942; 43 M. I. Kamenskii (9883_CR15) 2023; 44 I. Benedetti (9883_CR5) 2017; 20 Y. Zhou (9883_CR19) 2010; 59 |
| References_xml | – volume: 92 start-page: 115 year: 2013 ident: 9883_CR7 publication-title: Appl. Anal. doi: 10.1080/00036811.2011.601454 – volume: 97 start-page: 571 year: 2017 ident: 9883_CR8 publication-title: Appl. Anal. doi: 10.1080/00036811.2016.1277583 – volume: 33 start-page: 75 year: 1997 ident: 9883_CR11 publication-title: Differ. Equations – volume: 44 start-page: 3331 year: 2023 ident: 9883_CR15 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080223080243 – volume-title: Introduction to the Theory of Multivalued Maps and Differential Inclusions year: 2011 ident: 9883_CR17 – volume: 113 start-page: 235 year: 1986 ident: 9883_CR10 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(86)90347-1 – volume: 64 start-page: 91 year: 1969 ident: 9883_CR18 publication-title: Fundam. Math. doi: 10.4064/fm-64-1-91-97 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 9883_CR1 – volume: 32 start-page: 415 year: 2022 ident: 9883_CR4 publication-title: Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki. doi: 10.35634/vm220305 – volume: 59 start-page: 1063 year: 2010 ident: 9883_CR19 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.06.026 – volume: 115 start-page: 358 year: 2024 ident: 9883_CR3 publication-title: Math. Notes doi: 10.1134/S0001434624030088 – volume: 20 start-page: 1424 year: 2017 ident: 9883_CR5 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2017-0075 – volume-title: Solution Sets for Differential Equations and Inclusions year: 2013 ident: 9883_CR13 doi: 10.1515/9783110293562 – volume-title: Topological Fixed Point Theory of Multivalued Mappings year: 2006 ident: 9883_CR12 – volume-title: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces year: 2001 ident: 9883_CR14 doi: 10.1515/9783110870893 – volume: 56 start-page: 1387 year: 2020 ident: 9883_CR6 publication-title: Differ. Equations doi: 10.1134/S00122661200110014 – volume-title: Fractional Differential Equations year: 1999 ident: 9883_CR2 – volume: 43 start-page: 730 year: 1942 ident: 9883_CR9 publication-title: Second Ser. – volume-title: Cosine Operator Functions year: 1966 ident: 9883_CR16 |
| SSID | ssj0045200 |
| Score | 2.3302126 |
| Snippet | We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order
in Banach spaces. It is... We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | Banach spaces Boundary value problems Cauchy problems Inclusions Mathematics Mathematics and Statistics Neighborhoods Operators (mathematics) Ordinary differential equations Topology |
| Title | Topological Structure of the Solution Set of a Cauchy Problem for Fractional Differential Inclusions with an Upper Semicontinuous Right-Hand Side |
| URI | https://link.springer.com/article/10.1134/S1064562424601823 https://www.proquest.com/docview/3265655571 |
| Volume | 111 |
| WOSCitedRecordID | wos001603155600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1531-8362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045200 issn: 1064-5624 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1Eo6AYmUEQSOw-PqFB1oaqaFnWL7NgRlUpaNQ0SP4N_jO0kVLwGyJhYpyjn3H32-b4PoUvGsJ1wji2epswiaeBZXGUJS7dtEiyECAk3YhNBrxeOx7Rf9XHn9Wn3uiRpInWpO0JuIkdTq5l2BrWICF28jjZUtgu1XsMgeqzDL9E8QqbE6RNLD69KmT-a-JyMVgjzS1HU5JrO7r_ecg_tVNASbsu5sI_WZHaAth8-eFnzQ_Q2LDURtGcgMtSxxULCLAU1COotMojkUt9j0GZF8vQK_VJ1BhTAhc6ibIVQBu4qcRUVJKagAs200FtvOei9XWAZjOZzuVDGnif6QPwkK2ZFDgPDXNJlmYBoIuQRGnXuh-2uVYkyWAl28NLiwuFEX9RlHg859aXjpS4P7FRgKh0cMje1Weh7VChIHLgaU0lX2FgzayUUH6NGNsvkCQLlKbWutxNPUEFCR1KcMI0faMB8jxHeRFe1d-J5yb0RmzULJvG379xErdp_cfUb5rHCpgqwel7gNNF17a_V41-Nnf5p9BnacrUqsDnP00IN5T15jjaTl-UkX1yY2fkOh7XeMw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NHxLwABsM0VHgHvYEipbEThM_TmVVJ6CqmnbiLbJjR1RiadU0SPwZ_MfYTkI1tj1AHhPrFOWcu88-3_cBfOWcuKkQxBFZxh2ahYEjdJZwTNsmJVLKiAorNhEOBtHtLRvWfdxFc9q9KUnaSF3pjtBvsWeo1Ww7g15ERD5Zgw2qE5YhzB_Fv5rwSw2PkC1xdqhjhtelzH-a-DMZrRDmq6KozTW9vXe95UfYraElfq_mwif4oPJ92Ll54WUtDuBpXGkiGM9gbKljy4XCWYZ6EDZbZBirpbnHscvL9O4Rh5XqDGqAi71F1QqhDVzW4io6SNyjDjT3pdl6K9Ds7SLPcTKfq4U29ntqDsRP83JWFjiyzCV9nkuMp1J9hknvx7jbd2pRBiclHlk6QnqCmov5PBCRYB3lBZkvQjeThCmPRNzPXB51AiY1JA59g6mUL11imLVSRg5hPZ_l6ghQe0qv6900kEzSyFOMpNzgBxbyTsCpaMF5451kXnFvJHbNQmjy13duQbvxX1L_hkWisakGrEEQei24aPy1evxfY1_eNPoMtvrjm-vk-ufg6hi2faMQbM_2tGFde1KdwGb6sJwWi1M7U58B-sjhFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4NNiF4YBsMUWDbPexpU0QSO038iCgV07aqWmDiLbJjR6tU0qppkPgZ_GN8TkI1Nh4m8phYp8Tn2N_5fN8H8ElK5udKMU8VhfR4EUeesquER2WbnGmtE66c2EQ8GiVXV2Lc6pxW3Wn3LiXZ1DQQS1O5PJ7rotUg4cdpQDRrrrTBBhRJyNbgJadz9BSup7-6qZgTp5BLd_a5R83btOY_Tfy5MK3Q5qMEqVt3hq-f_cZvYLuFnHjSjJG38MKUO7D144GvtdqFu4tGK4E8hqmjlK0XBmcF2kbYbZ1hapZ0T-KprPPftzhu1GjQAl8cLpoSCWtg0Iqu2MljinYCmta0JVch7fmiLPFyPjcLa-x6Qt8wKetZXeFPx2hyLkuN6USbd3A5PLs4PfdasQYvZwFbekoHitMlQhmpRIm-CaIiVLFfaCZMwBIZFr5M-pHQFirHIWEtE2qfEeNWLtgerJez0uwDWq_ZeN_PIy00TwIjWC4JV4hY9iPJVQ8-d57K5g0nR-ZiGcazv_q5B0edL7P296wyi1ktkI2iOOjBl853q8dPGjv4r9YfYWM8GGbfv46-HcJmSMLB7sjPEaxbR5r38Cq_WU6qxQc3aO8BhF3p-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Structure+of+the+Solution+Set+of+a+Cauchy+Problem+for+Fractional+Differential+Inclusions+with+an+Upper+Semicontinuous+Right-Hand+Side&rft.jtitle=Doklady.+Mathematics&rft.au=Petrosyan%2C+G.+G.&rft.date=2025-04-01&rft.issn=1064-5624&rft.eissn=1531-8362&rft.volume=111&rft.issue=2&rft.spage=121&rft.epage=125&rft_id=info:doi/10.1134%2FS1064562424601823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1064562424601823 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5624&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5624&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5624&client=summon |