Topological Structure of the Solution Set of a Cauchy Problem for Fractional Differential Inclusions with an Upper Semicontinuous Right-Hand Side

We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Doklady. Mathematics Ročník 111; číslo 2; s. 121 - 125
Hlavní autor: Petrosyan, G. G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.04.2025
Springer Nature B.V
Témata:
ISSN:1064-5624, 1531-8362
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an -set.
AbstractList We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an -set.
We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is assumed that the linear part of the inclusions is a linear closed operator generating a strongly continuous and uniformly bounded family of cosine operator functions. The nonlinear part is represented by an upper semicontinuous multivalued operator of Carathéodory type. It is established that the solution set of the problem is an -set.
Author Petrosyan, G. G.
Author_xml – sequence: 1
  givenname: G. G.
  surname: Petrosyan
  fullname: Petrosyan, G. G.
  email: garikpetrosyan@yandex.ru
  organization: Voronezh State Pedagogical University
BookMark eNp1kMtKxDAYhYOM4Hh5AHcB19Vcmky7lNFRQVCsrkuaJjMZOknNBfExfGNTRnAhZpP8Od858J9jMLPOKgDOMbrEmJZXDUa8ZJyUpOQIV4QegDlmFBcV5WSW31kuJv0IHIewRahkBKE5-Hp1oxvc2kgxwCb6JGPyCjoN40bBxg0pGmdho-L0J-BSJLn5hM_edYPaQe08XHkhJygH3BitlVc2mjw8WDmkkIUAP0zcQGHh2zgqn8N2RroM2eRSgC9mvYnFvbA9bEyvTsGhFkNQZz_3CXhb3b4u74vHp7uH5fVjISmmseh63JXTqYlgXdXVXGGmSbdAuqe1wrQSRCNRcVb3Fe4WhDCOFOkRLVG9kDU9ARf73NG796RCbLcu-bxFaCnhjDPGFjhTeE9J70LwSrejNzvhP1uM2qn59k_z2UP2npBZu1b-N_l_0zcA2ofN
Cites_doi 10.1080/00036811.2011.601454
10.1080/00036811.2016.1277583
10.1134/S1995080223080243
10.1016/0022-247X(86)90347-1
10.4064/fm-64-1-91-97
10.35634/vm220305
10.1016/j.camwa.2009.06.026
10.1134/S0001434624030088
10.1515/fca-2017-0075
10.1515/9783110293562
10.1515/9783110870893
10.1134/S00122661200110014
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 1064-5624, Doklady Mathematics, 2025, Vol. 111, No. 2, pp. 121–125. © Pleiades Publishing, Ltd., 2025.
Pleiades Publishing, Ltd. 2025.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 1064-5624, Doklady Mathematics, 2025, Vol. 111, No. 2, pp. 121–125. © Pleiades Publishing, Ltd., 2025.
– notice: Pleiades Publishing, Ltd. 2025.
DBID AAYXX
CITATION
DOI 10.1134/S1064562424601823
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8362
EndPage 125
ExternalDocumentID 10_1134_S1064562424601823
GroupedDBID --Z
-Y2
-~X
.VR
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABCQX
ABDBE
ABDBF
ABDZT
ABECU
ABEFU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETEA
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFFNX
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L7B
LLZTM
M2P
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
TUS
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VJK
W23
W48
WH7
WK8
YLTOR
ZMTXR
AAYXX
AFKRA
AZQEC
BENPR
CITATION
DWQXO
GNUQQ
HCIFZ
ID FETCH-LOGICAL-c313t-bd1b4444492a5b8b96e15f2b70fd39e138a2f0a8659d81b722560e2d034097c93
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603155600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1064-5624
IngestDate Wed Nov 26 07:57:48 EST 2025
Sat Nov 29 07:02:14 EST 2025
Tue Oct 28 02:38:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords topological structure
set
differential inclusion
fractional derivative
condensing multioperator
family of cosine operator functions
multivalued map
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-bd1b4444492a5b8b96e15f2b70fd39e138a2f0a8659d81b722560e2d034097c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1134/S1064562424601823.pdf
PQID 3265655571
PQPubID 2043597
PageCount 5
ParticipantIDs proquest_journals_3265655571
crossref_primary_10_1134_S1064562424601823
springer_journals_10_1134_S1064562424601823
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Doklady. Mathematics
PublicationTitleAbbrev Dokl. Math
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References M. I. Kamenskii (9883_CR8) 2017; 97
V. V. Filippov (9883_CR11) 1997; 33
S. Djebali (9883_CR13) 2013
G. G. Petrosyan (9883_CR4) 2022; 32
V. V. Obukhovskii (9883_CR3) 2024; 115
T. D. Ke (9883_CR7) 2013; 92
I. Podlubny (9883_CR2) 1999
A. A. Kilbas (9883_CR1) 2006
L. Górniewicz (9883_CR10) 1986; 113
L. Górniewicz (9883_CR12) 2006
M. Kamenskii (9883_CR14) 2001
D. H. Hyman (9883_CR18) 1969; 64
M. Sova (9883_CR16) 1966
Yu. G. Borisovich (9883_CR17) 2011
M. I. Gomoyunov (9883_CR6) 2020; 56
N. Aronszajn (9883_CR9) 1942; 43
M. I. Kamenskii (9883_CR15) 2023; 44
I. Benedetti (9883_CR5) 2017; 20
Y. Zhou (9883_CR19) 2010; 59
References_xml – volume: 92
  start-page: 115
  year: 2013
  ident: 9883_CR7
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2011.601454
– volume: 97
  start-page: 571
  year: 2017
  ident: 9883_CR8
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2016.1277583
– volume: 33
  start-page: 75
  year: 1997
  ident: 9883_CR11
  publication-title: Differ. Equations
– volume: 44
  start-page: 3331
  year: 2023
  ident: 9883_CR15
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080223080243
– volume-title: Introduction to the Theory of Multivalued Maps and Differential Inclusions
  year: 2011
  ident: 9883_CR17
– volume: 113
  start-page: 235
  year: 1986
  ident: 9883_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90347-1
– volume: 64
  start-page: 91
  year: 1969
  ident: 9883_CR18
  publication-title: Fundam. Math.
  doi: 10.4064/fm-64-1-91-97
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 9883_CR1
– volume: 32
  start-page: 415
  year: 2022
  ident: 9883_CR4
  publication-title: Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki.
  doi: 10.35634/vm220305
– volume: 59
  start-page: 1063
  year: 2010
  ident: 9883_CR19
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.06.026
– volume: 115
  start-page: 358
  year: 2024
  ident: 9883_CR3
  publication-title: Math. Notes
  doi: 10.1134/S0001434624030088
– volume: 20
  start-page: 1424
  year: 2017
  ident: 9883_CR5
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2017-0075
– volume-title: Solution Sets for Differential Equations and Inclusions
  year: 2013
  ident: 9883_CR13
  doi: 10.1515/9783110293562
– volume-title: Topological Fixed Point Theory of Multivalued Mappings
  year: 2006
  ident: 9883_CR12
– volume-title: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces
  year: 2001
  ident: 9883_CR14
  doi: 10.1515/9783110870893
– volume: 56
  start-page: 1387
  year: 2020
  ident: 9883_CR6
  publication-title: Differ. Equations
  doi: 10.1134/S00122661200110014
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 9883_CR2
– volume: 43
  start-page: 730
  year: 1942
  ident: 9883_CR9
  publication-title: Second Ser.
– volume-title: Cosine Operator Functions
  year: 1966
  ident: 9883_CR16
SSID ssj0045200
Score 2.3302126
Snippet We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is...
We study the topological structure of the solution set of the Cauchy problem for semilinear differential inclusions of fractional order in Banach spaces. It is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 121
SubjectTerms Banach spaces
Boundary value problems
Cauchy problems
Inclusions
Mathematics
Mathematics and Statistics
Neighborhoods
Operators (mathematics)
Ordinary differential equations
Topology
Title Topological Structure of the Solution Set of a Cauchy Problem for Fractional Differential Inclusions with an Upper Semicontinuous Right-Hand Side
URI https://link.springer.com/article/10.1134/S1064562424601823
https://www.proquest.com/docview/3265655571
Volume 111
WOSCitedRecordID wos001603155600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1531-8362
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045200
  issn: 1064-5624
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1Eo6AYmUEQeThOPqFB1gKpq2qpb5Di2iFTSKmmQ-Bn8Y2wnoeI1QMbEukQ-5_zZ5_s-hC6pxXAkBDMEbmMDM44NiolpeC7DEt62fa5JfSYPXr_vT6dkUNVx5_Vp9zolqSN1qTuCbwJLUavpcga5iPBtZx1tyNnOV3oNw2BSh1-seIR0ilO-WzWvUpk_mvg8Ga0Q5pekqJ5rurv_-so9tFNBS7gtx8I-WuPpAdp-_OBlzQ_R26jURFCegUBTxxYZh7kA2QjqLTII-FLdo9ChBXt6hUGpOgMS4EI3K0shpIG7SlxFBokZyEAzK9TWWw5qbxdoCuPFgmfS2HOiDsQnaTEvchhq5pIeTWMIkpgfoXH3ftTpGZUog8Ecy1kaUWxFWF3Epm7kR6TNLVfYkWeK2CHccnxqC5P6bZfEEhJ7tsJU3I5NRzFrMeIco0Y6T_kJAlXVG0nERjCNVUU-xYxQzjEWJjM5d5voqvZOuCi5N0K9ZnFw-K2fm6hV-y-sfsM8lNhUAlbX9awmuq79tXr8q7HTP7U-Q1u2UgXW53laqCG9x8_RJntZJnl2oUfnO3Qr3fo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN2I8feAEqugjXZsjAqYhxoTWbdqtStNUTBrdtK5I_Az-MUnagngdoMc2cqs4tb_Y8WeAU2ZxEiUJNxJSJwbhghiMUNPwXE4kvK37QpP69Fteu-0PBvShrOPOqtPuVUpSW-qi7wi5CCxFrabLGeQmwredeVgk0mEpwvxO0K_ML1E8QjrFKd-thpepzB9FfHZGHwjzS1JU-5rG-r--cgPWSmiJl8Va2IQ5kW7B6v07L2u2Da_doieC0gwGmjo2nwocJygHYRUiw0DM1D2GVyznjy_4UHSdQQlwsTEtSiGkgOuyuYo0EiOUhmaUq9Bbhiq2iyzF3mQiplLY01AdiB-m-TjPsKOZS5osjTEYxmIHeo2b7lXTKJsyGNyxnJkRxVZE1EVt5kZ-ROvCchM78swkdqiwHJ_Zicn8uktjCYk9W2EqYcemo5i1OHV2YSEdp2IPUFX1RhKxUcJiVZHPCKdMCEISk5tCuDU4q7QTTgrujVDvWRwSfpvnGhxW-gvL3zALJTaVgNV1PasG55W-Ph7_Kmz_T6NPYLnZvW-Frdv23QGs2KpDsD7bcwgLUpPiCJb482yYTY_1Sn0D5JLg3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQBUceLQglkeZAydQRB7OJj4iYAWCrlYNIG6R49hiJciuNhskfgb_GI-TgAr0gJpjMho5Gcf-7PF8H8Ce8CTLtJaOZl3mMKmYIxh3nSiUzMDbbqwsqc_NZdTvx7e3fNDonJbtafc2JVnXNBBLUzE9HOe60SBhh4lHNGu2tMEsKGI_-AZzjM7R03I9uWmHYkacQjbdadpB5k1a81MXf09Mb2jzXYLUzju95f9u8QosNZATj-o-sgozqvgBi79f-VrLn_B8VWslUMQwsZSy1UThSKMxwnbrDBM1pXsCj0Ul755wUKvRoAG-2JvUJRLGwUkjumIGj3s0A9B9RVtyJdKeL4oCr8djNTHOHob0DsOiGlUl_rGMJmeiyDEZ5moNrnunV8dnTiPW4MjAC6ZOlnsZo4v7IszijHeVF2o_i1ydB1x5QSx87Yq4G_LcQOXIJ6yl_NwNiHFL8mAdZotRoTYAqdo3M0iOM5FTpb5gkgulGNOudJUKO7DfRiod15wcqV3LBCz98J07sN3GMm1-zzI1mNUA2TCMvA4ctLF7e_xPZ5tfst6F74OTXnp53r_YggWfhIPtkZ9tmDWBVDswLx-nw3Lyy3baF2Sg6cI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Structure+of+the+Solution+Set+of+a+Cauchy+Problem+for+Fractional+Differential+Inclusions+with+an+Upper+Semicontinuous+Right-Hand+Side&rft.jtitle=Doklady.+Mathematics&rft.au=Petrosyan%2C+G.+G.&rft.date=2025-04-01&rft.pub=Pleiades+Publishing&rft.issn=1064-5624&rft.eissn=1531-8362&rft.volume=111&rft.issue=2&rft.spage=121&rft.epage=125&rft_id=info:doi/10.1134%2FS1064562424601823&rft.externalDocID=10_1134_S1064562424601823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5624&client=summon