Learning Occluded Branch Depth Maps in Forest Environments Using RGB-D Images

Covering over a third of all terrestrial land area, forests are crucial environments; as ecosystems, for farming, and for human leisure. However, they are challenging to access for environmental monitoring, for agricultural uses, and for search and rescue applications. To enter, aerial robots need t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 9; H. 3; S. 2439 - 2446
Hauptverfasser: Geckeler, Christian, Aucone, Emanuele, Schnider, Yannick, Simeon, Andri, von Bassewitz, Jan-Philipp, Zhu, Yunying, Mintchev, Stefano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.03.2024
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!