Learning Occluded Branch Depth Maps in Forest Environments Using RGB-D Images

Covering over a third of all terrestrial land area, forests are crucial environments; as ecosystems, for farming, and for human leisure. However, they are challenging to access for environmental monitoring, for agricultural uses, and for search and rescue applications. To enter, aerial robots need t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 9; H. 3; S. 2439 - 2446
Hauptverfasser: Geckeler, Christian, Aucone, Emanuele, Schnider, Yannick, Simeon, Andri, von Bassewitz, Jan-Philipp, Zhu, Yunying, Mintchev, Stefano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.03.2024
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Covering over a third of all terrestrial land area, forests are crucial environments; as ecosystems, for farming, and for human leisure. However, they are challenging to access for environmental monitoring, for agricultural uses, and for search and rescue applications. To enter, aerial robots need to fly through dense vegetation, where foliage can be pushed aside, but occluded branches pose critical obstacles. Therefore, we propose pixel-wise depth regression of occluded branches using three different U-Net inspired architectures. Given RGB-D input of trees with partially occluded branches, the models estimate depth values of only the wooden parts of the tree. A large photorealistic simulation dataset comprising around 44 K images of nine different tree species is generated, on which the models are trained. Extensive evaluation and analysis of the models on this dataset is shown. To improve network generalization to real-world data, different data augmentation and transformation techniques are performed. The approaches are then also successfully demonstrated on real-world data of broadleaf trees from Swiss temperate forests and a tropical Masoala Rainforest. This work showcases the previously unexplored task of frame-by-frame pixel-based occluded branch depth reconstruction to facilitate robot traversal of forest environments.
AbstractList Covering over a third of all terrestrial land area, forests are crucial environments; as ecosystems, for farming, and for human leisure. However, they are challenging to access for environmental monitoring, for agricultural uses, and for search and rescue applications. To enter, aerial robots need to fly through dense vegetation, where foliage can be pushed aside, but occluded branches pose critical obstacles. Therefore, we propose pixel-wise depth regression of occluded branches using three different U-Net inspired architectures. Given RGB-D input of trees with partially occluded branches, the models estimate depth values of only the wooden parts of the tree. A large photorealistic simulation dataset comprising around 44 K images of nine different tree species is generated, on which the models are trained. Extensive evaluation and analysis of the models on this dataset is shown. To improve network generalization to real-world data, different data augmentation and transformation techniques are performed. The approaches are then also successfully demonstrated on real-world data of broadleaf trees from Swiss temperate forests and a tropical Masoala Rainforest. This work showcases the previously unexplored task of frame-by-frame pixel-based occluded branch depth reconstruction to facilitate robot traversal of forest environments.
Author Schnider, Yannick
von Bassewitz, Jan-Philipp
Mintchev, Stefano
Aucone, Emanuele
Geckeler, Christian
Simeon, Andri
Zhu, Yunying
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0001-7680-7730
  surname: Geckeler
  fullname: Geckeler, Christian
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Emanuele
  orcidid: 0000-0003-2956-0047
  surname: Aucone
  fullname: Aucone, Emanuele
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Yannick
  orcidid: 0009-0007-7755-6436
  surname: Schnider
  fullname: Schnider, Yannick
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: Andri
  orcidid: 0009-0008-9262-2304
  surname: Simeon
  fullname: Simeon, Andri
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: Jan-Philipp
  orcidid: 0009-0002-1652-5592
  surname: von Bassewitz
  fullname: von Bassewitz, Jan-Philipp
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: Yunying
  orcidid: 0009-0008-8198-0982
  surname: Zhu
  fullname: Zhu, Yunying
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
– sequence: 7
  givenname: Stefano
  orcidid: 0000-0001-6272-0212
  surname: Mintchev
  fullname: Mintchev, Stefano
  organization: Environmental Robotics Laboratory, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
BookMark eNp1kEtrAjEURkOxUGvddxnoemxe81r6bmFEkLoOmSSjEU2mSSz033dEF6XQ1b2L73z3ch5BzzqrAXjGaIQxKl-rzXhEEGEjStM0o-QO9AnN84TmWdb7tT-AYQgHhBBOSU7LtA9WlRbeGruDaymPZ6UVnHhh5R7OdBv3cCXaAI2FC-d1iHBuv4x39qRtDHAbLtxmOUlm8P0kdjo8gftGHIMe3uYAbBfzj-lbUq2X79NxlUiKaUxqQaRSmDGmS4E1EUQx2VCE66ZuGJOSNZnO8wIXEuWKKF3UgmmcYsS6eCnpALxce1vvPs_dY_zgzt52JzkpCaIFKzPSpbJrSnoXgtcNlyaKaJyNXpgjx4hf7PHOHr_Y4zd7HYj-gK03J-G__0d-AIIUclo
CitedBy_id crossref_primary_10_1109_TMECH_2024_3410167
crossref_primary_10_1109_TRO_2024_3508140
crossref_primary_10_1109_ACCESS_2025_3604842
crossref_primary_10_1109_LRA_2025_3583603
crossref_primary_10_3390_rs17040717
Cites_doi 10.1139/juvs-2020-0005
10.1109/ICRA.2019.8793576
10.1126/scirobotics.abg5810
10.1109/lra.2024.3355632/mm1
10.1109/LRA.2020.2974710
10.1109/ICRA48506.2021.9561675
10.4060/ca8642en
10.1109/3DV.2016.32
10.1109/LRA.2022.3154047
10.1109/ICCV.2015.304
10.1109/TPAMI.2020.3013679
10.1109/ICIP.2019.8803146
10.1109/URAI.2019.8768489
10.1007/978-3-319-24574-4_28
10.1126/scirobotics.abm5954
10.1109/LRA.2017.2775699
10.1126/scirobotics.add5762
10.1007/978-3-642-33715-4_54
10.1126/scirobotics.abg1188
10.1007/978-3-030-01252-6_9
10.1007/s11119-021-09813-y
10.1145/3123266.3129396
10.1002/fee.2420
10.1002/aisy.202200087
10.1016/j.compag.2020.105952
10.1109/ICUAS54217.2022.9836115
10.1109/ICRA48891.2023.10160650
10.1016/j.displa.2021.102080
10.1007/s10531-017-1453-2
10.1038/srep29987
10.1007/978-3-319-10584-0_23
10.3389/frai.2022.830026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2024.3355632
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2446
ExternalDocumentID 10_1109_LRA_2024_3355632
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
7SC
7SP
8FD
AARMG
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c313t-ba2cdd1444e9a1e2a2d4cf301bfbf44cc4f6e77818c07d2de8ba4e15104a1e9c3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001167554600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 16:54:02 EDT 2025
Sat Nov 29 06:03:29 EST 2025
Tue Nov 18 21:33:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-ba2cdd1444e9a1e2a2d4cf301bfbf44cc4f6e77818c07d2de8ba4e15104a1e9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6272-0212
0009-0008-8198-0982
0000-0003-2956-0047
0009-0007-7755-6436
0009-0002-1652-5592
0000-0001-7680-7730
0009-0008-9262-2304
OpenAccessLink http://hdl.handle.net/20.500.11850/659145
PQID 2920384962
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2920384962
crossref_citationtrail_10_1109_LRA_2024_3355632
crossref_primary_10_1109_LRA_2024_3355632
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref14
ref36
ref31
ref30
ref33
Chen (ref34)
(ref38) 2024
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
Eigen (ref23) 2014; 27
ref18
Aucone (ref15) 2023
(ref37) 2024
ref24
Csurka (ref43) 2021
ref26
ref25
ref20
ref41
ref22
ref44
ref21
ref28
ref27
ref8
ref7
Hamaza (ref11) 2020
ref9
ref4
Jiang (ref29) 2018
ref3
ref6
ref5
Kingma (ref42) 2017
ref40
(ref13) 2023
References_xml – ident: ref8
  doi: 10.1139/juvs-2020-0005
– ident: ref22
  doi: 10.1109/ICRA.2019.8793576
– ident: ref32
  doi: 10.1126/scirobotics.abg5810
– ident: ref1
  doi: 10.1109/lra.2024.3355632/mm1
– ident: ref17
  doi: 10.1109/LRA.2020.2974710
– year: 2017
  ident: ref42
  article-title: Adam: A method for stochastic optimization
– ident: ref35
  doi: 10.1109/ICRA48506.2021.9561675
– ident: ref2
  doi: 10.4060/ca8642en
– ident: ref25
  doi: 10.1109/3DV.2016.32
– ident: ref7
  doi: 10.1109/LRA.2022.3154047
– ident: ref31
  doi: 10.1109/ICRA48506.2021.9561675
– ident: ref24
  doi: 10.1109/ICCV.2015.304
– ident: ref44
  doi: 10.1109/TPAMI.2020.3013679
– year: 2020
  ident: ref11
  article-title: Sensor delivery in forests with aerial robots: A new paradigm for environmental monitoring
  publication-title: IEEE IROS Workshop Perception, Planning Mobility Forestry Robot.
– ident: ref28
  doi: 10.1109/ICIP.2019.8803146
– ident: ref40
  doi: 10.1109/URAI.2019.8768489
– ident: ref36
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref6
  doi: 10.1126/scirobotics.abm5954
– ident: ref18
  doi: 10.1007/978-3-319-24574-4_28
– year: 2024
  ident: ref37
  article-title: SpeedTree
– ident: ref16
  doi: 10.1109/LRA.2017.2775699
– year: 2021
  ident: ref43
  article-title: Unsupervised domain adaptation for semantic image segmentation: A comprehensive survey
– ident: ref10
  doi: 10.1126/scirobotics.add5762
– ident: ref41
  doi: 10.1007/978-3-642-33715-4_54
– ident: ref14
  doi: 10.1126/scirobotics.abg1188
– ident: ref26
  doi: 10.1007/978-3-030-01252-6_9
– year: 2018
  ident: ref29
  article-title: Rednet: Residual encoder-decoder network for indoor RGB-D semantic segmentation
– ident: ref12
  doi: 10.1007/s11119-021-09813-y
– ident: ref39
  doi: 10.1145/3123266.3129396
– ident: ref3
  doi: 10.1002/fee.2420
– ident: ref9
  doi: 10.1002/aisy.202200087
– ident: ref21
  doi: 10.1016/j.compag.2020.105952
– ident: ref33
  doi: 10.1109/ICUAS54217.2022.9836115
– year: 2023
  ident: ref13
  article-title: Tevel
– ident: ref19
  doi: 10.1109/ICRA48891.2023.10160650
– ident: ref27
  doi: 10.1016/j.displa.2021.102080
– ident: ref4
  doi: 10.1007/s10531-017-1453-2
– ident: ref5
  doi: 10.1038/srep29987
– ident: ref30
  doi: 10.1007/978-3-319-10584-0_23
– volume: 27
  start-page: 2366
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref23
  article-title: Depth map prediction from a single image using a multi-scale deep network
– year: 2024
  ident: ref38
  article-title: Unreal engine
– year: 2023
  ident: ref15
  article-title: Synergistic morphology and feedback control for traversal of unknown compliant obstacles with aerial robots synergistic morphology and feedback control for traversal of unknown compliant obstacles with aerial robots
– ident: ref20
  doi: 10.3389/frai.2022.830026
– start-page: 2021
  ident: ref34
  article-title: TransUNet: Transformers make strong encoders for medical image segmentation
SSID ssj0001527395
Score 2.2893317
Snippet Covering over a third of all terrestrial land area, forests are crucial environments; as ecosystems, for farming, and for human leisure. However, they are...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2439
SubjectTerms Data augmentation
Datasets
Environmental monitoring
Foliage
Forests
Image reconstruction
Pixels
Rainforests
Robots
Trees
Title Learning Occluded Branch Depth Maps in Forest Environments Using RGB-D Images
URI https://www.proquest.com/docview/2920384962
Volume 9
WOSCitedRecordID wos001167554600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKf2BfIBIaEq3dRx4vq4C9kFqe2i3a5UTpHjOGqlNi1tutoTf4-_xdiJ3RSkFRy4RFUefXi-jmfGnu9D6F3aDYQUing5D4VeZux5QkXSy5QvCcxokDlXYhNsOOyNx_xrq_XT9sLczlhR9O7u-PK_mhrOgbF16-w_mNu9KZyA12B0OILZ4fhXhu_bYsellLNNBgHlmRbPmIBrWZaT9kAszRZYrcm5Lttxs9Gt2j9wdXHmfWp_mYOnWTdjV50XtleLdOGYncWmXFStj-2ZaQtyAfqFAu9gmwwntSNx4NpAEm4KqfFcFBs1c-C61oSyWfXYN62mJF0j0fV0rmr96yJbTZvVCkK327U6tt9tZxdEbMR-HDFC7LR_1o6Q0XlLE3PDT7U1EmXcJAmYcZNR06fzBnSDpn-mFXXSnxOH4V3tX5129LfuBIEmTiPbSdJuDBheJuc3_X4yisej98vvnpYv08v8tZbLA_SQsJBr9zr40Sj2aZo7Htplcp-f_P5Ju2HRblRgQp3RM_S0zlHwaYWt56ilihfoSYO58iUaWJRhizJcoQwblGGNMjwtcIUy3EQZNijDBmW4QtkrdHMejz5-9mplDk8G3aD0UkFklkEuThUXXUUEyajMYa5I8zSnVEqaR4oxCAalzzKSqV4qqILg0qdwO5fBa7RXANL2EWaQkfjdXFK4RgmLeMgyJqI8FCpQIVUH6MQOTCJr2nqtnjJLTPrq8wSGMtFDmdRDeYA-uCeWFWXLPfce27FO6v_wOtECbkGP8ogc3n_5CD3eYvwY7ZWrjXqDHsnbcrpevTUQ-AW8mpd5
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Occluded+Branch+Depth+Maps+in+Forest+Environments+Using+RGB-D+Images&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Geckeler%2C+Christian&rft.au=Aucone%2C+Emanuele&rft.au=Schnider%2C+Yannick&rft.au=Simeon%2C+Andri&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=9&rft.issue=3&rft.spage=2439&rft_id=info:doi/10.1109%2FLRA.2024.3355632&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon