Hybrid Evolutionary Algorithm Based Relevance Feedback Approach for Image Retrieval

Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is to capture the high level semantic of user. The researchers of multimedia domain are trying to fix this issue with the help of Relevance Fee...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers, materials & continua Ročník 70; číslo 1; s. 963 - 979
Hlavní autori: Mahmood, Awais, Imran, Muhammad, Irtaza, Aun, Abbas, Qammar, Dhahri, Habib, Mohammed Asem Othman, Esam, Jamal Malik, Arif, Afzaal Abbasi, Aaqif
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Henderson Tech Science Press 01.01.2022
Predmet:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is to capture the high level semantic of user. The researchers of multimedia domain are trying to fix this issue with the help of Relevance Feedback (RF). However existing RF based approaches needs a number of iteration to fulfill user's requirements. This paper proposed a novel methodology to achieve better results in early iteration to reduce the user interaction with the system. In previous research work it is reported that SVM based RF approach generating better results for CBIR. Therefore, this paper focused on SVM based RF approach. To enhance the performance of SVM based RF approach this research work applied Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) before applying SVM on user feedback. The main objective of using these meta-heuristic was to increase the positive image sample size from SVM. Firstly steps PSO is applied by incorporating the user feedback and secondly GA is applied on the result generated through PSO, finally SVM is applied using the positive sample generated through GA. The proposed technique is named as Particle Swarm Optimization Genetic Algorithm- Support Vector Machine Relevance Feedback (PSO-G A-SVM-RF). Precisions, recall and F-score are used as performance metrics for the assessment and validation of PSO-GA-SVM-RF approach and experiments are conducted on coral image dataset having 10908 images. From experimental results it is proved that PSO-GA-SVM-RF approach outperformed then various well known CBIR approaches.
AbstractList Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is to capture the high level semantic of user. The researchers of multimedia domain are trying to fix this issue with the help of Relevance Feedback (RF). However existing RF based approaches needs a number of iteration to fulfill user's requirements. This paper proposed a novel methodology to achieve better results in early iteration to reduce the user interaction with the system. In previous research work it is reported that SVM based RF approach generating better results for CBIR. Therefore, this paper focused on SVM based RF approach. To enhance the performance of SVM based RF approach this research work applied Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) before applying SVM on user feedback. The main objective of using these meta-heuristic was to increase the positive image sample size from SVM. Firstly steps PSO is applied by incorporating the user feedback and secondly GA is applied on the result generated through PSO, finally SVM is applied using the positive sample generated through GA. The proposed technique is named as Particle Swarm Optimization Genetic Algorithm- Support Vector Machine Relevance Feedback (PSO-G A-SVM-RF). Precisions, recall and F-score are used as performance metrics for the assessment and validation of PSO-GA-SVM-RF approach and experiments are conducted on coral image dataset having 10908 images. From experimental results it is proved that PSO-GA-SVM-RF approach outperformed then various well known CBIR approaches.
Author Irtaza, Aun
Dhahri, Habib
Afzaal Abbasi, Aaqif
Imran, Muhammad
Jamal Malik, Arif
Abbas, Qammar
Mohammed Asem Othman, Esam
Mahmood, Awais
Author_xml – sequence: 1
  givenname: Awais
  surname: Mahmood
  fullname: Mahmood, Awais
– sequence: 2
  givenname: Muhammad
  surname: Imran
  fullname: Imran, Muhammad
– sequence: 3
  givenname: Aun
  surname: Irtaza
  fullname: Irtaza, Aun
– sequence: 4
  givenname: Qammar
  surname: Abbas
  fullname: Abbas, Qammar
– sequence: 5
  givenname: Habib
  surname: Dhahri
  fullname: Dhahri, Habib
– sequence: 6
  givenname: Esam
  surname: Mohammed Asem Othman
  fullname: Mohammed Asem Othman, Esam
– sequence: 7
  givenname: Arif
  surname: Jamal Malik
  fullname: Jamal Malik, Arif
– sequence: 8
  givenname: Aaqif
  surname: Afzaal Abbasi
  fullname: Afzaal Abbasi, Aaqif
BookMark eNp1kMtrAjEQxkOxULW99xjoeW1eG83Rii8QCn2cQ8zO6trdjU2i4H_fWHsohZ5mhvm-efx6qNO6FhC6p2TAmSTi0TZ2wAhjA0IVU_QKdWkuZMYYk51f-Q3qhbAjhEuuSBe9Lk5rXxV4enT1IVauNf6Ex_XG-SpuG_xkAhT4BWo4mtYCngEUa2M_8Hi_987YLS6dx8vGbCCpoq-Srr5F16WpA9z9xD56n03fJots9TxfTsarzHLKY2aAKyEoMGILKoaFYZaLUqgcrASgwlrGh-dCKWJ4IcVIFYqljlnnI05L3kcPl7nplM8DhKh37uDbtFInIjmTuaCjpCIXlfUuBA-l3vuqSW9qSvQ3Op3Q6TM6fUGXLPKPxVbRnOlEb6r6f-MXsip1HQ
CitedBy_id crossref_primary_10_1016_j_displa_2024_102899
Cites_doi 10.3390/jtaer16030032
10.1016/j.ins.2020.08.040
10.1007/978-981-15-4474-3_7
10.1109/TIP.2005.863969
10.1016/j.proeng.2013.02.063
10.1016/j.ins.2016.09.021
10.1109/TPAMI.2006.134
10.1145/1348246.1348248
10.1023/A:1016568309421
10.1016/j.swevo.2018.01.011
10.1109/76.927422
10.1109/TSMCA.2002.802812
10.21833/ijaas.2016.12.007
10.1504/IJSISE.2012.046742
10.1186/s13673-019-0191-8
10.1109/76.927424
10.1007/s11042-020-08953-z
10.1016/j.ijepes.2010.03.001
10.1109/TKDE.2007.1003
10.1145/1126004.1126005
10.1016/j.eswa.2011.08.086
10.1109/TMM.2017.2711263
10.1109/TCSVT.2007.890634
10.1109/TSMCB.2006.880137
10.1145/2954930
10.1016/0165-0114(95)00256-1
10.1016/j.patcog.2011.03.016
10.1109/34.895972
10.1016/j.amc.2006.12.066
10.1109/TMM.2010.2046269
10.1109/TII.2019.2906083
10.1109/TFUZZ.2015.2417895
10.1007/s10766-016-0469-7
10.1109/34.955109
10.1007/s00500-016-2102-5
10.1109/ACCESS.2019.2959325
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.019291
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 979
ExternalDocumentID 10_32604_cmc_2022_019291
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-ae39441e20cd147da2c34f495ec6ee14cc2375ec6990a3d6489d92ee1ab5831f3
IEDL.DBID PIMPY
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696956000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 08:29:06 EST 2025
Sat Nov 29 03:13:19 EST 2025
Tue Nov 18 22:15:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ae39441e20cd147da2c34f495ec6ee14cc2375ec6990a3d6489d92ee1ab5831f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2605265418?pq-origsite=%requestingapplication%
PQID 2605265418
PQPubID 2048737
PageCount 17
ParticipantIDs proquest_journals_2605265418
crossref_primary_10_32604_cmc_2022_019291
crossref_citationtrail_10_32604_cmc_2022_019291
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Kofler (ref1) 2016; 49
Zinko (ref5) 2021; 16
Batool (ref33) 2020; 14
Yager (ref44) 2015; 23
ref16
Broilo (ref31) 2010; 12
D'Angelo (ref32) 2021; 54
Koskela (ref9) 2004
Bul (ref11) 2011; 44
Lew (ref3) 2006; 2
Imran (ref21) 2013; 53
Ghrabat (ref37) 2019; 9
Anum (ref20) 2016; 3
Bhatt (ref7) 2021; 1
Jin (ref24) 2017; 45
Brits (ref26) 2007; 189
Manjunath (ref43) 2001; 11
Parsopoulos (ref22) 2002; 1
Sikora (ref40) 2001; 11
Saadatmand-Tarzjan (ref41) 2007; 37
Tian (ref19) 2018; 41
Bordogna (ref10) 1996; 82
Khan (ref34) 2020; 14
Kumar (ref29) 2020; 79
Cho (ref35) 2002; 32
Zhu (ref28) 2017; 375
Wickramasinghe (ref23) 2019; 15
Shi (ref27) 2017; 19
Okayama (ref30) 2008
Lu (ref17) 2010; 32
Dong (ref18) 2017; 21
Tao (ref12) 2006; 28
Sadad (ref25) 2020; 3
Baddeti (ref36) 2013; 10
Smeulders (ref2) 2000; 22
Datta (ref4) 2008; 40
Syam (ref39) 2012; 5
Djordjevic (ref13) 2007; 17
Yildizer (ref14) 2012; 39
Kennedy (ref15) 1995; 4
Wang (ref42) 2001; 23
Tao (ref8) 2007; 19
Kher (ref6) 2006; 15
Guha (ref38) 2019; 14
References_xml – volume: 16
  start-page: 525
  year: 2021
  ident: ref5
  article-title: The addition of images to eWOM in the travel industry: An examination of hotels, cruise ships and fast food reviews
  publication-title: Journal of Theoretical and Applied Electronic Commerce Research
  doi: 10.3390/jtaer16030032
– start-page: 608
  year: 2008
  ident: ref30
  publication-title: Neural Information Processing
– volume: 54
  start-page: 136
  year: 2021
  ident: ref32
  article-title: GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.08.040
– volume: 1
  start-page: 63
  year: 2021
  ident: ref7
  article-title: A comprehensive review on content-based image retrieval system: Features and challenges
  publication-title: Data Science and Intelligent Applications
  doi: 10.1007/978-981-15-4474-3_7
– volume: 14
  start-page: 1
  year: 2020
  ident: ref34
  article-title: Human action recognition using fusion of multiview and deep features: An application to video surveillance
  publication-title: Multimedia Tools and Applications
– volume: 14
  start-page: 120
  year: 2020
  ident: ref33
  article-title: Offline signature verification system: A novel technique of fusion of GLCM and geometric features using SVM
  publication-title: Multimedia Tools and Applications
– volume: 15
  start-page: 1017
  year: 2006
  ident: ref6
  article-title: Relevance feedback for cbir: A new approach based on probabilistic feature weighting with positive and negative examples
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.863969
– volume: 53
  start-page: 491
  year: 2013
  ident: ref21
  article-title: An overview of particle swarm optimization variants
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.02.063
– volume: 375
  start-page: 246
  year: 2017
  ident: ref28
  article-title: Interpretation of users’ feedback via swarmed particles for content-based image retrieval
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.09.021
– volume: 28
  start-page: 1088
  year: 2006
  ident: ref12
  article-title: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.134
– volume: 40
  start-page: 1
  year: 2008
  ident: ref4
  article-title: Image retrieval: Ideas, influences, and trends of the new age
  publication-title: ACM Computing Surveys
  doi: 10.1145/1348246.1348248
– volume: 1
  start-page: 235
  year: 2002
  ident: ref22
  article-title: Recent approaches to global optimization problems through particle swarm optimization
  publication-title: Natural Computing
  doi: 10.1023/A:1016568309421
– volume: 41
  start-page: 49
  year: 2018
  ident: ref19
  article-title: MPSO: Modified particle swarm optimization and its applications
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.01.011
– volume: 11
  start-page: 696
  year: 2001
  ident: ref40
  article-title: The mpeg-7 visual standard for content description-an overview
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/76.927422
– volume: 32
  start-page: 452
  year: 2002
  ident: ref35
  article-title: A human-oriented image retrieval system using interactive genetic algorithm
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMCA.2002.802812
– volume: 3
  start-page: 49
  year: 2016
  ident: ref20
  article-title: A hybrid particle swarm optimization (PSO) with Chi-square and stable mutation jump strategy
  publication-title: International Journal of Advanced and Applied Sciences
  doi: 10.21833/ijaas.2016.12.007
– volume: 10
  start-page: 143
  year: 2013
  ident: ref36
  article-title: An effective similarity measure via genetic algorithm for content based image retrieval with extensive features
  publication-title: International Arab Journal of Information Technology
– volume: 5
  start-page: 18
  year: 2012
  ident: ref39
  article-title: An effective similarity measure via genetic algorithm for content-based image retrieval with extensive features
  publication-title: International Journal of Signal and Imaging Systems Engineering
  doi: 10.1504/IJSISE.2012.046742
– volume: 9
  start-page: 1
  year: 2019
  ident: ref37
  article-title: An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier
  publication-title: Human-centric Computing and Information Sciences
  doi: 10.1186/s13673-019-0191-8
– volume: 11
  start-page: 703
  year: 2001
  ident: ref43
  article-title: Color and texture descriptors
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/76.927424
– volume: 79
  start-page: 22277
  year: 2020
  ident: ref29
  article-title: An efficient content based image retrieval using an optimized neural network for medical application
  publication-title: Multimed Tools and Applications
  doi: 10.1007/s11042-020-08953-z
– volume: 32
  start-page: 921
  year: 2010
  ident: ref17
  article-title: Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2010.03.001
– start-page: 508
  year: 2004
  ident: ref9
  article-title: Use of image subset features in image retrieval with self-organizing maps
– volume: 19
  start-page: 568
  year: 2007
  ident: ref8
  article-title: Negative samples analysis in relevance feedback
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1003
– volume: 2
  start-page: 1
  year: 2006
  ident: ref3
  article-title: Content-based multimedia information retrieval: State of the art and challenges
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
  doi: 10.1145/1126004.1126005
– volume: 14
  start-page: 1
  year: 2019
  ident: ref38
  article-title: Deluge based genetic algorithm for feature selection
  publication-title: Evolutionary Intelligence
– volume: 39
  start-page: 2385
  year: 2012
  ident: ref14
  article-title: Efficient content based image retrieval using multiple support vector machines ensemble
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.086
– volume: 19
  start-page: 2804
  year: 2017
  ident: ref27
  article-title: Structure-preserving image super-resolution via contextualized multitask learning
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2017.2711263
– volume: 17
  start-page: 313
  year: 2007
  ident: ref13
  article-title: An object- and user-driven system for semantic-based image annotation and retrieval
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2007.890634
– volume: 37
  start-page: 139
  year: 2007
  ident: ref41
  article-title: A novel evolutionary approach for optimizing content-based image indexing algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2006.880137
– volume: 49
  start-page: 1
  year: 2016
  ident: ref1
  article-title: User intent in multimedia search: A survey of the state of the art and future challenges
  publication-title: ACM Computing Surveys
  doi: 10.1145/2954930
– volume: 82
  start-page: 201
  year: 1996
  ident: ref10
  article-title: A user-adaptive neural network supporting a rule-based relevance feedback
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(95)00256-1
– volume: 44
  start-page: 2109
  year: 2011
  ident: ref11
  article-title: Content-based image retrieval with relevance feedback using random walks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.03.016
– volume: 22
  start-page: 1349
  year: 2000
  ident: ref2
  article-title: Content-based image retrieval at the end of the early years
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.895972
– volume: 189
  start-page: 1859
  year: 2007
  ident: ref26
  article-title: Locating multiple optima using particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.12.066
– volume: 3
  start-page: 180
  year: 2020
  ident: ref25
  article-title: A review on multi-organs cancer detection using advanced machine learning techniques
  publication-title: Current Medical Imaging
– volume: 12
  start-page: 267
  year: 2010
  ident: ref31
  article-title: A stochastic approach to image retrieval using relevance feedback and particle swarm optimization
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2010.2046269
– volume: 15
  start-page: 5837
  year: 2019
  ident: ref23
  article-title: Deep self-organizing maps for unsupervised image classification
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2906083
– volume: 23
  start-page: 2260
  year: 2015
  ident: ref44
  article-title: Golden rule and other representative values for atanassov type intuitionistic membership grades
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2417895
– volume: 45
  start-page: 1273
  year: 2017
  ident: ref24
  article-title: Pathfinder: Application-aware distributed path computation in clouds
  publication-title: International Journal of Parallel Programming
  doi: 10.1007/s10766-016-0469-7
– volume: 4
  start-page: 1942
  year: 1995
  ident: ref15
  article-title: Particle swarm optimization
  publication-title: IEEE Int. Conf. on Neural Networks
– volume: 23
  start-page: 947
  year: 2001
  ident: ref42
  article-title: Simplicity: Semantics-sensitive integrated matching for picture libraries
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.955109
– volume: 21
  start-page: 5081
  year: 2017
  ident: ref18
  article-title: Opposition-based particle swarm optimization with adaptive mutation strategy
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2102-5
– ident: ref16
  doi: 10.1109/ACCESS.2019.2959325
SSID ssj0036390
Score 2.2539835
Snippet Searching images from the large image databases is one of the potential research areas of multimedia research. The most challenging task for nay CBIR system is...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 963
SubjectTerms Evolutionary algorithms
Feedback
Genetic algorithms
Heuristic methods
Image management
Image retrieval
Multimedia
Particle swarm optimization
Performance measurement
Support vector machines
User feedback
Title Hybrid Evolutionary Algorithm Based Relevance Feedback Approach for Image Retrieval
URI https://www.proquest.com/docview/2605265418
Volume 70
WOSCitedRecordID wos000696956000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5By8DCG_GWBxaG0NhO85hQQa1AgqriJZgi5-ICoi3QFiT-PXeJA2JhYozsWFHufN_58d0HsK_Qb_phrryMGTKBRT4kTKwXoUWpUCssWO-351G3G9_dJT1Hj564a5VVTCwCdVntme9tUxBu5C_IO-YNzsIVS1jHR69vHmtI8VmrE9SYhToX3vJrUO-dXfTuq8isCY0LgmQzCD1F2FYeW1IC4wcNHHJBQ6UOOedJ5G-Y-h2lC-jpLP7vRy_BgktBRav0mWWYsaMVWKzkHYSb7atwdfrJdC7R_nDuacafojV4oCGnj0NxTPiXi0vmp7PniA7hYGbwWbRcmXJB-bA4G1LAol6s20VOvQY3nfb1yannNBg81FJPPWOZOSut8jGXQZQbsl_Qp1WVxdBaGSAqHfEDoZrReRjESZ4oajFZM9ayr9ehNnoZ2Q0QvsQokoixMQSJvm8SaWPMIhX3TRDqbBMa1S9P0RUoZ52MQUoLlcJIKRkpZSOlpZE24eD7jdeyOMcffXcqE6Vumk7SH4ts_d28DfM8Vrn3sgO16fjd7sIcfkyfJuM9qB-3u73LPedvXx_d4w4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KVK5UEqLCBTqQzlwWLJ-ZB8HhAI0SpQ0iqBF7WnxzjotIo-ShKL8KX4jM_sA9dJbDj2u7LXW9uf5xvbOfABHCv2mH2TKSzlCxjjkS8LYeSE6lAq1wjzq_Ws_HAyi8_N4uAF_qlgY_q2ysom5oc5myGfkDfa7FYtWR--vf3qsGsW3q5WERgGLnlv9pi3b4l33E83va6Xax6cfO16pKuChlnrpWcexoNIpHzNpwszSF5kR7RMcBs5Jg6h0yA9kp63OAhPFWayoxKbNSMuRpnY3YcsQ2P0abA27J8OLyvZr4vs8BLNpAk8RexYXo-Qi-aaBE06ZqNRb9qpieZsIb_NATm7tnfs2LI_hUelGi1aB-13YcNMnsFNJVIjSYu3Bl86KQ9LE8U25xOx8JVrjS-rC8moiPhCHZ-Izx9gz-kWbuDy1-EO0ylTrgnx60Z2Q0aVarD1GC3MfztbStadQm86m7hkIX2IYSsTIWqJ137exdBGmoYpG1gQ6rUOjmtQEyyTrrPUxTmizlcMgIRgkDIOkgEEd3vx747pIMHJH3YMKBElpahbJfwQ8v7v4ELY7pyf9pN8d9F7AQ263OEs6gNpy_su9hAd4s_y-mL8qUS3g27oR8xe1lDM7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Evolutionary+Algorithm+Based+Relevance+Feedback+Approach+for+Image+Retrieval&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Mahmood%2C+Awais&rft.au=Imran%2C+Muhammad&rft.au=Irtaza%2C+Aun&rft.au=Abbas%2C+Qammar&rft.date=2022-01-01&rft.issn=1546-2226&rft.volume=70&rft.issue=1&rft.spage=963&rft.epage=979&rft_id=info:doi/10.32604%2Fcmc.2022.019291&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_019291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon