Dynamically Optimized Object Detection Algorithms for Aviation Safety
Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 14; číslo 17; s. 3536 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
04.09.2025
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges in complex sky backgrounds, including low signal-to-noise ratio (SNR), small target dimensions, and strong background clutter, leading to insufficient detection accuracy and reliability. To address these issues, this paper proposes the AFK-YOLO model based on the YOLO11 framework: it integrates an ADown downsampling module, which utilizes a dual-branch strategy combining average pooling and max pooling to effectively minimize feature information loss during spatial resolution reduction; introduces the KernelWarehouse dynamic convolution approach, which adopts kernel partitioning and a contrastive attention-based cross-layer shared kernel repository to address the challenge of linear parameter growth in conventional dynamic convolution methods; and establishes a feature decoupling pyramid network (FDPN) that replaces static feature pyramids with a dynamic multi-scale fusion architecture, utilizing parallel multi-granularity convolutions and an EMA attention mechanism to achieve adaptive feature enhancement. Experiments demonstrate that the AFK-YOLO model achieves 78.6% mAP on a self-constructed aerial infrared dataset—a 2.4 percentage point improvement over the baseline YOLO11—while meeting real-time requirements for aviation safety monitoring (416.7 FPS), reducing parameters by 6.9%, and compressing weight size by 21.8%. The results demonstrate the effectiveness of dynamic optimization methods in improving the accuracy and robustness of infrared target detection under complex aerial environments, thereby providing reliable technical support for the prevention of mid-air collisions. |
|---|---|
| AbstractList | Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges in complex sky backgrounds, including low signal-to-noise ratio (SNR), small target dimensions, and strong background clutter, leading to insufficient detection accuracy and reliability. To address these issues, this paper proposes the AFK-YOLO model based on the YOLO11 framework: it integrates an ADown downsampling module, which utilizes a dual-branch strategy combining average pooling and max pooling to effectively minimize feature information loss during spatial resolution reduction; introduces the KernelWarehouse dynamic convolution approach, which adopts kernel partitioning and a contrastive attention-based cross-layer shared kernel repository to address the challenge of linear parameter growth in conventional dynamic convolution methods; and establishes a feature decoupling pyramid network (FDPN) that replaces static feature pyramids with a dynamic multi-scale fusion architecture, utilizing parallel multi-granularity convolutions and an EMA attention mechanism to achieve adaptive feature enhancement. Experiments demonstrate that the AFK-YOLO model achieves 78.6% mAP on a self-constructed aerial infrared dataset—a 2.4 percentage point improvement over the baseline YOLO11—while meeting real-time requirements for aviation safety monitoring (416.7 FPS), reducing parameters by 6.9%, and compressing weight size by 21.8%. The results demonstrate the effectiveness of dynamic optimization methods in improving the accuracy and robustness of infrared target detection under complex aerial environments, thereby providing reliable technical support for the prevention of mid-air collisions. |
| Audience | Academic |
| Author | Wu, Jing Wang, Cheng Ju, Haijuan Qu, Yi Xiao, Yilei |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-6994-1843 surname: Qu fullname: Qu, Yi – sequence: 2 givenname: Cheng surname: Wang fullname: Wang, Cheng – sequence: 3 givenname: Yilei surname: Xiao fullname: Xiao, Yilei – sequence: 4 givenname: Haijuan surname: Ju fullname: Ju, Haijuan – sequence: 5 givenname: Jing surname: Wu fullname: Wu, Jing |
| BookMark | eNptUMtOwzAQtFCRKKVfwCUS5xYnXifxMWrLQ0LqAThHjrMurpK42C5S-HoM5cCB3cOuRjOz2rkkk8EOSMh1SpeMCXqLHarg7GCUTyEtGGf5GZlmtBALkYls8me_IHPv9zSWSFnJ6JRs1uMge6Nk143J9hBMbz6xTbbNPpomawxxGDskVbezzoS33ifauqT6MPIHf5Yaw3hFzrXsPM5_54y83m1eVg-Lp-3946p6WiiWsrCQjcxzraFVBVAhIFUNlkoo2uYIwKFpiwwwEwhl5DeNLLUSnBdZmQsuUbEZuTn5Hpx9P6IP9d4e3RBP1iwDkZcAUETW8sTayQ5rM2gbnFSxW4yfxvC0iXhVcg6cAWVRwE4C5az3DnV9cKaXbqxTWn9nXP-TMfsC12N0Gg |
| Cites_doi | 10.1007/978-3-030-34372-9 10.1109/TIP.2023.3326396 10.1109/ICCV.2017.322 10.1016/j.measurement.2024.116518 10.1038/s41586-019-1724-z 10.23919/CCC52363.2021.9549852 10.1007/978-3-031-72751-1_1 10.2139/ssrn.4854547 10.1109/ICEMI.2017.8265833 10.1007/s11263-009-0275-4 10.1109/CVPR.2018.00913 10.1109/TGRS.2020.3044958 10.1109/TGRS.2023.3243062 10.1109/CVPR52733.2024.01656 10.1109/TGRS.2022.3195740 10.1109/TPAMI.2016.2577031 10.1109/TGRS.2020.3022069 10.1006/cviu.2002.0960 10.3390/fire8010017 10.3390/s24123885 10.1109/CVPR.2017.106 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics14173536 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A855453403 10_3390_electronics14173536 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c313t-aba66ff4dc7409941cbe8c9c0d6e4454bd724e29e48313bba8fc955728695aec3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001569682600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Fri Sep 19 06:40:52 EDT 2025 Tue Nov 04 18:11:01 EST 2025 Sat Nov 29 07:12:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-aba66ff4dc7409941cbe8c9c0d6e4454bd724e29e48313bba8fc955728695aec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6994-1843 |
| OpenAccessLink | https://www.proquest.com/docview/3249684447?pq-origsite=%requestingapplication% |
| PQID | 3249684447 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_3249684447 gale_infotracacademiconefile_A855453403 crossref_primary_10_3390_electronics14173536 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-04 |
| PublicationDateYYYYMMDD | 2025-09-04 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_14 ref_13 ref_12 ref_11 ref_10 ref_19 ref_18 ref_16 ref_15 Liu (ref_20) 2023; 32 Everingham (ref_30) 2010; 88 ref_25 ref_24 ref_23 ref_22 ref_21 Yuan (ref_9) 2023; 73 Rosin (ref_8) 2002; 86 ref_1 ref_2 Tan (ref_31) 2019; 97 ref_29 Dai (ref_3) 2021; 59 ref_28 ref_27 ref_26 Sun (ref_17) 2020; 59 Vinyals (ref_32) 2019; 575 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_1 doi: 10.1007/978-3-030-34372-9 – volume: 32 start-page: 5921 year: 2023 ident: ref_20 article-title: Infrared small and dim target detection with transformer under complex backgrounds publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2023.3326396 – ident: ref_5 doi: 10.1109/ICCV.2017.322 – ident: ref_24 – ident: ref_22 doi: 10.1016/j.measurement.2024.116518 – ident: ref_16 – volume: 575 start-page: 350 year: 2019 ident: ref_32 article-title: Grandmaster level in StarCraft II using multi-agent reinforcement learning publication-title: Nature doi: 10.1038/s41586-019-1724-z – ident: ref_21 doi: 10.23919/CCC52363.2021.9549852 – ident: ref_26 doi: 10.1007/978-3-031-72751-1_1 – ident: ref_14 doi: 10.2139/ssrn.4854547 – ident: ref_2 doi: 10.1109/ICEMI.2017.8265833 – volume: 88 start-page: 303 year: 2010 ident: ref_30 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – ident: ref_25 doi: 10.1109/CVPR.2018.00913 – volume: 73 start-page: 1 year: 2023 ident: ref_9 article-title: Thermal infrared target tracking: A comprehensive review publication-title: IEEE Trans. Instrum. Meas. – volume: 59 start-page: 9813 year: 2021 ident: ref_3 article-title: Attentional local contrast networks for infrared small target detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3044958 – ident: ref_13 doi: 10.1109/TGRS.2023.3243062 – ident: ref_6 – ident: ref_18 doi: 10.1109/CVPR52733.2024.01656 – ident: ref_15 doi: 10.1109/TGRS.2022.3195740 – ident: ref_4 – ident: ref_11 doi: 10.1109/TPAMI.2016.2577031 – ident: ref_27 – volume: 59 start-page: 3737 year: 2020 ident: ref_17 article-title: Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3022069 – ident: ref_12 – volume: 86 start-page: 79 year: 2002 ident: ref_8 article-title: Thresholding for change detection publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2002.0960 – ident: ref_10 – ident: ref_23 doi: 10.3390/fire8010017 – ident: ref_19 doi: 10.3390/s24123885 – ident: ref_29 doi: 10.1109/CVPR.2017.106 – volume: 97 start-page: 6105 year: 2019 ident: ref_31 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks publication-title: Int. Conf. Mach. Learn. PMLR |
| SSID | ssj0000913830 |
| Score | 2.329517 |
| Snippet | Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3536 |
| SubjectTerms | Accuracy Aeronautics Air safety Aircraft accidents & safety Algorithms Aviation Background noise Clutter Computer vision Convolution Decoupling Deep learning Design Efficiency False alarms Imaging systems Infrared imaging Infrared tracking Learning strategies Midair collisions Monitoring Neural networks Object recognition Optimization Parameters Pyramids Radiation Real time Safety and security measures Signal to noise ratio Spatial resolution Surveillance Target detection |
| Title | Dynamically Optimized Object Detection Algorithms for Aviation Safety |
| URI | https://www.proquest.com/docview/3249684447 |
| Volume | 14 |
| WOSCitedRecordID | wos001569682600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yQMSCxE4dmJ7QoUWwdA24iEBS2Q7DlQqBZqABAO_HTtJKQNiYcngRLJ1d77znS_fB7ArNdZMpK6pPeE2QSHCU5gGntbcT7Ei1gXKgmyCdbv85kZEVcEtq9oqxz6xcNTJk3Y18gMb-EXIKaXs6PnFc6xR7na1otCYhrpDKqM1qB-3u9HFd5XFoV5ycljCDRGb3x9M2GUyTDEjQQHOPAlJvzvmItqcLvx3nYswX50zUbM0jCWYMsNlmPuBPrgC7VbJRi8Hg3fUs67jsf9hEtRTrjSDWiYvurSGqDm4txPkD48Zsidc1HwrtYkuZWry91W4Pm1fnZx5FauCpwkmuSeVDMM0pYlmNrcTFGtluBb6MAkNpQFVCfOp8YWh3H6vlOSpFkHAfB6KQBpN1qA2fBqadUAcUy1UahgjKeWJr5hVgiFMOlDBEOMG7I8FGz-X4BmxTTqcHuJf9NCAPSf82G2tfCS1rP4QsJM5kKq46VrqAmINqgFbY-HH1Z7L4onkN_5-vQmzvmPxLa6FtqCWj17NNszot7yfjXYqE9qB6c5n2z6j4M6OReed6PYL56bWaQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aLRLbYfyc1q2ADyAuRKtjJ7YPCFV0U6ttXSWGVE7Bdpxt0pp2Tdap_FH8jdj5QTlU3HrgnCiR8335np_9_D2Ad1JjzUTiitpjbhMUIjyFaeBpzf0EK2IlUBbNJthwyMdjMdqCX_VZGFdWWWtiIdTxVLs18iMb-EXIKaXs8-zOc12j3O5q3UKjpMWpWT7YlC37NOhZfN_7_snx5Ze-V3UV8DTBJPekkmGYJDTWzOY2gmKtDNdCd-LQUBpQFTOfGl8Yyu39SkmeaBEEzOehCKTRxD73ETSpJTtvQHM0OB99_7Oq41w2OemU9kaEiM7RqptNhilmJCjMoFchcH0gKKLbydP_7bs8g91qHo26JfGfw5ZJX8DOX-6KL-G4t0xl4YZwu0QXVhonNz9NjC6UW3pCPZMXVWgp6t5e2QHl15MM2Rk86i5KtqKvMjH58hV828g49qCRTlOzD4hjqoVKDGMkoTz2FcNYGMKkM00MMW7BxxrIaFaag0Q2qXK4R2twb8EHB3bkpCOfSy2rExD2Zc6EK-q6ksGA2B-mBe0a7KjSlCxaIX3w78tv4Un_8vwsOhsMTw9h23cdi4stsDY08vm9eQ2P9SK_yeZvKvoi-LFpZvwG20owug |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqCo4AKVFLK_60KqXRruOndg-ILRiWRWBlpXaSohLajt2QYIAmwBafhq_DjsPlgPixoFzoljOfDPjscffB_BNaqyZsL6pPeWuQCEiUJhGgdY8tFgRFwJlKTbBBgN-fCyGU_DQ3IXxbZVNTCwDdXqp_R552yV-EXNKKWvbui1i2OvvXF0HXkHKn7Q2choVRA7M-M6Vb_n2fs_Z-nsY9vf-7P4KaoWBQBNMikAqGcfW0lQzV-cIirUyXAvdSWNDaURVykJqQmEod-8rJbnVIopYyGMRSaOJ--40zDJXY3rvGkYnT_s7nm-Tk05FdESI6LQnujY5ppiRqKSFniTDl1NCmef6i-_5Dy3BQr26Rt3KHT7BlMmWYf4Z5-Jn2OuNM1lyJJyP0ZELmBdn9yZFR8pvSKGeKcretAx1z_-7CRWnFzly63rUva0wjH5La4rxF_j7JvNYgZnsMjOrgDimWihrGCOW8jRUDGNhCJOeSjHGuAU_G6MmVxVlSOJKLY-B5AUMtOCHN3ziA0oxklrW9yLcYJ6aK-n6RsKIODdqwUZj-KSONHkysfra64-_wkcHh-Rwf3CwDnOhlzEuz8U2YKYY3ZhN-KBvi7N8tFXiGMG_t4bFI-cOOB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+Optimized+Object+Detection+Algorithms+for+Aviation+Safety&rft.jtitle=Electronics+%28Basel%29&rft.au=Qu+Yi&rft.au=Wang%2C+Cheng&rft.au=Xiao+Yilei&rft.au=Ju+Haijuan&rft.date=2025-09-04&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=17&rft.spage=3536&rft_id=info:doi/10.3390%2Felectronics14173536&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |