Dynamically Optimized Object Detection Algorithms for Aviation Safety

Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 14; číslo 17; s. 3536
Hlavní autoři: Qu, Yi, Wang, Cheng, Xiao, Yilei, Ju, Haijuan, Wu, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 04.09.2025
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges in complex sky backgrounds, including low signal-to-noise ratio (SNR), small target dimensions, and strong background clutter, leading to insufficient detection accuracy and reliability. To address these issues, this paper proposes the AFK-YOLO model based on the YOLO11 framework: it integrates an ADown downsampling module, which utilizes a dual-branch strategy combining average pooling and max pooling to effectively minimize feature information loss during spatial resolution reduction; introduces the KernelWarehouse dynamic convolution approach, which adopts kernel partitioning and a contrastive attention-based cross-layer shared kernel repository to address the challenge of linear parameter growth in conventional dynamic convolution methods; and establishes a feature decoupling pyramid network (FDPN) that replaces static feature pyramids with a dynamic multi-scale fusion architecture, utilizing parallel multi-granularity convolutions and an EMA attention mechanism to achieve adaptive feature enhancement. Experiments demonstrate that the AFK-YOLO model achieves 78.6% mAP on a self-constructed aerial infrared dataset—a 2.4 percentage point improvement over the baseline YOLO11—while meeting real-time requirements for aviation safety monitoring (416.7 FPS), reducing parameters by 6.9%, and compressing weight size by 21.8%. The results demonstrate the effectiveness of dynamic optimization methods in improving the accuracy and robustness of infrared target detection under complex aerial environments, thereby providing reliable technical support for the prevention of mid-air collisions.
AbstractList Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges in complex sky backgrounds, including low signal-to-noise ratio (SNR), small target dimensions, and strong background clutter, leading to insufficient detection accuracy and reliability. To address these issues, this paper proposes the AFK-YOLO model based on the YOLO11 framework: it integrates an ADown downsampling module, which utilizes a dual-branch strategy combining average pooling and max pooling to effectively minimize feature information loss during spatial resolution reduction; introduces the KernelWarehouse dynamic convolution approach, which adopts kernel partitioning and a contrastive attention-based cross-layer shared kernel repository to address the challenge of linear parameter growth in conventional dynamic convolution methods; and establishes a feature decoupling pyramid network (FDPN) that replaces static feature pyramids with a dynamic multi-scale fusion architecture, utilizing parallel multi-granularity convolutions and an EMA attention mechanism to achieve adaptive feature enhancement. Experiments demonstrate that the AFK-YOLO model achieves 78.6% mAP on a self-constructed aerial infrared dataset—a 2.4 percentage point improvement over the baseline YOLO11—while meeting real-time requirements for aviation safety monitoring (416.7 FPS), reducing parameters by 6.9%, and compressing weight size by 21.8%. The results demonstrate the effectiveness of dynamic optimization methods in improving the accuracy and robustness of infrared target detection under complex aerial environments, thereby providing reliable technical support for the prevention of mid-air collisions.
Audience Academic
Author Wu, Jing
Wang, Cheng
Ju, Haijuan
Qu, Yi
Xiao, Yilei
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-6994-1843
  surname: Qu
  fullname: Qu, Yi
– sequence: 2
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
– sequence: 3
  givenname: Yilei
  surname: Xiao
  fullname: Xiao, Yilei
– sequence: 4
  givenname: Haijuan
  surname: Ju
  fullname: Ju, Haijuan
– sequence: 5
  givenname: Jing
  surname: Wu
  fullname: Wu, Jing
BookMark eNptUMtOwzAQtFCRKKVfwCUS5xYnXifxMWrLQ0LqAThHjrMurpK42C5S-HoM5cCB3cOuRjOz2rkkk8EOSMh1SpeMCXqLHarg7GCUTyEtGGf5GZlmtBALkYls8me_IHPv9zSWSFnJ6JRs1uMge6Nk143J9hBMbz6xTbbNPpomawxxGDskVbezzoS33ifauqT6MPIHf5Yaw3hFzrXsPM5_54y83m1eVg-Lp-3946p6WiiWsrCQjcxzraFVBVAhIFUNlkoo2uYIwKFpiwwwEwhl5DeNLLUSnBdZmQsuUbEZuTn5Hpx9P6IP9d4e3RBP1iwDkZcAUETW8sTayQ5rM2gbnFSxW4yfxvC0iXhVcg6cAWVRwE4C5az3DnV9cKaXbqxTWn9nXP-TMfsC12N0Gg
Cites_doi 10.1007/978-3-030-34372-9
10.1109/TIP.2023.3326396
10.1109/ICCV.2017.322
10.1016/j.measurement.2024.116518
10.1038/s41586-019-1724-z
10.23919/CCC52363.2021.9549852
10.1007/978-3-031-72751-1_1
10.2139/ssrn.4854547
10.1109/ICEMI.2017.8265833
10.1007/s11263-009-0275-4
10.1109/CVPR.2018.00913
10.1109/TGRS.2020.3044958
10.1109/TGRS.2023.3243062
10.1109/CVPR52733.2024.01656
10.1109/TGRS.2022.3195740
10.1109/TPAMI.2016.2577031
10.1109/TGRS.2020.3022069
10.1006/cviu.2002.0960
10.3390/fire8010017
10.3390/s24123885
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics14173536
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A855453403
10_3390_electronics14173536
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c313t-aba66ff4dc7409941cbe8c9c0d6e4454bd724e29e48313bba8fc955728695aec3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001569682600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Sep 19 06:40:52 EDT 2025
Tue Nov 04 18:11:01 EST 2025
Sat Nov 29 07:12:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-aba66ff4dc7409941cbe8c9c0d6e4454bd724e29e48313bba8fc955728695aec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6994-1843
OpenAccessLink https://www.proquest.com/docview/3249684447?pq-origsite=%requestingapplication%
PQID 3249684447
PQPubID 2032404
ParticipantIDs proquest_journals_3249684447
gale_infotracacademiconefile_A855453403
crossref_primary_10_3390_electronics14173536
PublicationCentury 2000
PublicationDate 2025-09-04
PublicationDateYYYYMMDD 2025-09-04
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-04
  day: 04
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_12
ref_11
ref_10
ref_19
ref_18
ref_16
ref_15
Liu (ref_20) 2023; 32
Everingham (ref_30) 2010; 88
ref_25
ref_24
ref_23
ref_22
ref_21
Yuan (ref_9) 2023; 73
Rosin (ref_8) 2002; 86
ref_1
ref_2
Tan (ref_31) 2019; 97
ref_29
Dai (ref_3) 2021; 59
ref_28
ref_27
ref_26
Sun (ref_17) 2020; 59
Vinyals (ref_32) 2019; 575
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_1
  doi: 10.1007/978-3-030-34372-9
– volume: 32
  start-page: 5921
  year: 2023
  ident: ref_20
  article-title: Infrared small and dim target detection with transformer under complex backgrounds
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3326396
– ident: ref_5
  doi: 10.1109/ICCV.2017.322
– ident: ref_24
– ident: ref_22
  doi: 10.1016/j.measurement.2024.116518
– ident: ref_16
– volume: 575
  start-page: 350
  year: 2019
  ident: ref_32
  article-title: Grandmaster level in StarCraft II using multi-agent reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– ident: ref_21
  doi: 10.23919/CCC52363.2021.9549852
– ident: ref_26
  doi: 10.1007/978-3-031-72751-1_1
– ident: ref_14
  doi: 10.2139/ssrn.4854547
– ident: ref_2
  doi: 10.1109/ICEMI.2017.8265833
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_30
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: ref_25
  doi: 10.1109/CVPR.2018.00913
– volume: 73
  start-page: 1
  year: 2023
  ident: ref_9
  article-title: Thermal infrared target tracking: A comprehensive review
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 59
  start-page: 9813
  year: 2021
  ident: ref_3
  article-title: Attentional local contrast networks for infrared small target detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3044958
– ident: ref_13
  doi: 10.1109/TGRS.2023.3243062
– ident: ref_6
– ident: ref_18
  doi: 10.1109/CVPR52733.2024.01656
– ident: ref_15
  doi: 10.1109/TGRS.2022.3195740
– ident: ref_4
– ident: ref_11
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_27
– volume: 59
  start-page: 3737
  year: 2020
  ident: ref_17
  article-title: Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3022069
– ident: ref_12
– volume: 86
  start-page: 79
  year: 2002
  ident: ref_8
  article-title: Thresholding for change detection
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2002.0960
– ident: ref_10
– ident: ref_23
  doi: 10.3390/fire8010017
– ident: ref_19
  doi: 10.3390/s24123885
– ident: ref_29
  doi: 10.1109/CVPR.2017.106
– volume: 97
  start-page: 6105
  year: 2019
  ident: ref_31
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: Int. Conf. Mach. Learn. PMLR
SSID ssj0000913830
Score 2.329517
Snippet Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3536
SubjectTerms Accuracy
Aeronautics
Air safety
Aircraft accidents & safety
Algorithms
Aviation
Background noise
Clutter
Computer vision
Convolution
Decoupling
Deep learning
Design
Efficiency
False alarms
Imaging systems
Infrared imaging
Infrared tracking
Learning strategies
Midair collisions
Monitoring
Neural networks
Object recognition
Optimization
Parameters
Pyramids
Radiation
Real time
Safety and security measures
Signal to noise ratio
Spatial resolution
Surveillance
Target detection
Title Dynamically Optimized Object Detection Algorithms for Aviation Safety
URI https://www.proquest.com/docview/3249684447
Volume 14
WOSCitedRecordID wos001569682600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yQMSCxE4dmJ7QoUWwdA24iEBS2Q7DlQqBZqABAO_HTtJKQNiYcngRLJ1d77znS_fB7ArNdZMpK6pPeE2QSHCU5gGntbcT7Ei1gXKgmyCdbv85kZEVcEtq9oqxz6xcNTJk3Y18gMb-EXIKaXs6PnFc6xR7na1otCYhrpDKqM1qB-3u9HFd5XFoV5ycljCDRGb3x9M2GUyTDEjQQHOPAlJvzvmItqcLvx3nYswX50zUbM0jCWYMsNlmPuBPrgC7VbJRi8Hg3fUs67jsf9hEtRTrjSDWiYvurSGqDm4txPkD48Zsidc1HwrtYkuZWry91W4Pm1fnZx5FauCpwkmuSeVDMM0pYlmNrcTFGtluBb6MAkNpQFVCfOp8YWh3H6vlOSpFkHAfB6KQBpN1qA2fBqadUAcUy1UahgjKeWJr5hVgiFMOlDBEOMG7I8FGz-X4BmxTTqcHuJf9NCAPSf82G2tfCS1rP4QsJM5kKq46VrqAmINqgFbY-HH1Z7L4onkN_5-vQmzvmPxLa6FtqCWj17NNszot7yfjXYqE9qB6c5n2z6j4M6OReed6PYL56bWaQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aLRLbYfyc1q2ADyAuRKtjJ7YPCFV0U6ttXSWGVE7Bdpxt0pp2Tdap_FH8jdj5QTlU3HrgnCiR8335np_9_D2Ad1JjzUTiitpjbhMUIjyFaeBpzf0EK2IlUBbNJthwyMdjMdqCX_VZGFdWWWtiIdTxVLs18iMb-EXIKaXs8-zOc12j3O5q3UKjpMWpWT7YlC37NOhZfN_7_snx5Ze-V3UV8DTBJPekkmGYJDTWzOY2gmKtDNdCd-LQUBpQFTOfGl8Yyu39SkmeaBEEzOehCKTRxD73ETSpJTtvQHM0OB99_7Oq41w2OemU9kaEiM7RqptNhilmJCjMoFchcH0gKKLbydP_7bs8g91qHo26JfGfw5ZJX8DOX-6KL-G4t0xl4YZwu0QXVhonNz9NjC6UW3pCPZMXVWgp6t5e2QHl15MM2Rk86i5KtqKvMjH58hV828g49qCRTlOzD4hjqoVKDGMkoTz2FcNYGMKkM00MMW7BxxrIaFaag0Q2qXK4R2twb8EHB3bkpCOfSy2rExD2Zc6EK-q6ksGA2B-mBe0a7KjSlCxaIX3w78tv4Un_8vwsOhsMTw9h23cdi4stsDY08vm9eQ2P9SK_yeZvKvoi-LFpZvwG20owug
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqCo4AKVFLK_60KqXRruOndg-ILRiWRWBlpXaSohLajt2QYIAmwBafhq_DjsPlgPixoFzoljOfDPjscffB_BNaqyZsL6pPeWuQCEiUJhGgdY8tFgRFwJlKTbBBgN-fCyGU_DQ3IXxbZVNTCwDdXqp_R552yV-EXNKKWvbui1i2OvvXF0HXkHKn7Q2choVRA7M-M6Vb_n2fs_Z-nsY9vf-7P4KaoWBQBNMikAqGcfW0lQzV-cIirUyXAvdSWNDaURVykJqQmEod-8rJbnVIopYyGMRSaOJ--40zDJXY3rvGkYnT_s7nm-Tk05FdESI6LQnujY5ppiRqKSFniTDl1NCmef6i-_5Dy3BQr26Rt3KHT7BlMmWYf4Z5-Jn2OuNM1lyJJyP0ZELmBdn9yZFR8pvSKGeKcretAx1z_-7CRWnFzly63rUva0wjH5La4rxF_j7JvNYgZnsMjOrgDimWihrGCOW8jRUDGNhCJOeSjHGuAU_G6MmVxVlSOJKLY-B5AUMtOCHN3ziA0oxklrW9yLcYJ6aK-n6RsKIODdqwUZj-KSONHkysfra64-_wkcHh-Rwf3CwDnOhlzEuz8U2YKYY3ZhN-KBvi7N8tFXiGMG_t4bFI-cOOB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+Optimized+Object+Detection+Algorithms+for+Aviation+Safety&rft.jtitle=Electronics+%28Basel%29&rft.au=Qu+Yi&rft.au=Wang%2C+Cheng&rft.au=Xiao+Yilei&rft.au=Ju+Haijuan&rft.date=2025-09-04&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=17&rft.spage=3536&rft_id=info:doi/10.3390%2Felectronics14173536&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon