Alternating pattern orientation or phase can increase the amplitude of the visual evoked potential
•No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for t...
Gespeichert in:
| Veröffentlicht in: | Vision research (Oxford) Jg. 231; S. 108609 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.06.2025
|
| Schlagworte: | |
| ISSN: | 0042-6989, 1878-5646, 1878-5646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for the L-M but not for the S pathway.
Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation’s effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a “reversing” onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity. |
|---|---|
| AbstractList | Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity.Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity. •No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of the cVEP.•Alternating orientations of the grating patterns decreased the latency of the cVEP.•Alternating phases increase cVEP amplitude for the L-M but not for the S pathway. Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation’s effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a “reversing” onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity. Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked potentials for chromatic stimuli, while pattern reversal responses are considerably weaker. These differences likely arise in part from the transient and sustained nature of the achromatic and chromatic pathways, respectively; contrast adaption of the sustained, chromatic pathways may also contribute to these observations, as time-averaged contrast is higher for pattern reversals than for pattern onsets. Evidence suggests chromatic pathways may also be tuned for orientation similar to achromatic pathways. Changing orientations may stimulate additional neural populations and reduce contrast adaptation's effect on the evoked potential. We recorded responses to chromatic and achromatic patterns using both onsets and reversals, with and without alternating orientation. As a control, we included a "reversing" onset condition with a 180-degree spatial shift between presentations. Results revealed that responses binned over 6 s did not exhibit adaptation over 60 s. Chromatic onsets with alternating orientation or phase resulted in larger amplitudes and shorter latencies. Both orientation and phase changes increased chromatic onset responses for the L-M axis, but VEP amplitudes were smaller for alternating phases than for alternating orientations on the S-axis. One possible explanation is that in addition to recruiting different orientation-selective neurons, alternating phase or orientation produces motion responses, which are more prominent in L-M pathways than S pathways. Alternating the phases or orientations of the patterns likely increases the evoked response by recruiting additional neuron populations but at the cost of pathway specificity. |
| ArticleNumber | 108609 |
| Author | Crognale, Michael A. Tavakkoli, Alireza Ara, Jawshan |
| Author_xml | – sequence: 1 givenname: Jawshan surname: Ara fullname: Ara, Jawshan email: jara@unr.edu, jawshan@gmail.com organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA – sequence: 2 givenname: Alireza surname: Tavakkoli fullname: Tavakkoli, Alireza organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA – sequence: 3 givenname: Michael A. surname: Crognale fullname: Crognale, Michael A. organization: Integrative Neuroscience Program, University of Nevada Reno, Nevada 89557, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40305940$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEFv1DAQhS1URLeFf4CQj1yyHceOY1-QqqotlSpxKWfLcSbUSzYOtrMS_74OKRy5eDxPb55mvgtyNoUJCfnIYM-AyavD_uRTxLSvoW6KpCToN2THVKuqRgp5RnYAoq6kVvqcXKR0AIC2qfU7ci6AQ6MF7Eh3PWaMk81--kFnm9eGhuhxykUL65_OzzYhdXaifnIR1yY_I7XHefR56ZGG4Y9Q9lnsSPEUfmJP55BLiLfje_J2sGPCD6_1kny_u326-Vo9frt_uLl-rBxnPFe2azstHILqB5CsaXgrZKc7tEo6Lru2brSskbUoeyuUY84K3iJYLrRQg-CX5POWO8fwa8GUzdEnh-NoJwxLMpxpxaG8rFg_vVqX7oi9maM_2vjb_OVSDGIzuBhSoTz8szAwK35zMBt-s-I3G_4y9mUbw3LnyWM0yRWUDnsf0WXTB___gBfOupA0 |
| Cites_doi | 10.1590/1414-431X20122428 10.1016/0042-6989(93)90010-T 10.1113/jphysiol.2002.033555 10.1007/s10633-020-09780-1 10.1093/brain/57.4.355 10.1016/S0896-6273(00)81036-3 10.1113/jphysiol.1959.sp006308 10.1111/j.1749-6632.1969.tb14007.x 10.1007/s10633-009-9170-0 10.1167/iovs.07-0018 10.1364/JOSAA.10.001818 10.1016/0042-6989(74)90120-5 10.1016/j.cobeha.2019.04.001 10.1016/0013-4694(65)90076-3 10.1038/158540a0 10.1016/j.visres.2011.02.012 10.1167/15.6.4 10.1016/0013-4694(54)90007-3 10.1038/153360a0 10.1126/science.149.3688.1115 10.1016/S0042-6989(00)00021-3 10.1364/JOSAA.14.002595 10.1126/science.aaw5868 10.1016/S0896-6273(00)81037-5 10.1016/S0042-6989(97)00425-2 10.1016/0013-4694(66)90088-5 10.1017/S095252380000239X 10.1136/bjo.73.7.502 10.1016/0042-6989(94)90222-4 10.1167/3.2.5 10.1017/S0952523812000351 10.1111/j.1748-1716.1960.tb01840.x 10.1364/JOSA.69.001183 10.1016/j.knosys.2022.109715 10.1016/S0042-6989(98)00219-3 10.1016/S0896-6273(00)81038-7 10.1113/jphysiol.1983.sp014619 10.1152/jn.1978.41.3.788 10.1038/s41433-021-01614-x 10.1016/0042-6989(90)90102-Q 10.1167/10.12.34 10.1016/0042-6989(91)90169-6 10.1016/0042-6989(73)90237-X 10.1016/0042-6989(91)90111-H 10.1113/jphysiol.1984.sp015498 10.1007/BF01184777 10.1113/jphysiol.2010.188862 10.1038/292543a0 10.1038/86061 10.1016/0042-6989(84)90178-0 10.1017/S0952523808080243 10.1167/2.6.2 10.1113/jphysiol.1984.sp015499 10.1007/s10633-016-9553-y 10.1016/S0166-2236(96)10036-9 10.1016/S0042-6989(99)00098-X 10.1523/JNEUROSCI.0276-22.2022 |
| ContentType | Journal Article |
| Copyright | 2025 Copyright © 2025. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.visres.2025.108609 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1878-5646 |
| ExternalDocumentID | 40305940 10_1016_j_visres_2025_108609 S0042698925000707 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P30 GM145646 |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABDPE ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AETEA AEUPX AEXQZ AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HMQ HVGLF HZ~ H~9 IHE IXB J1W K-O KOM L7B LZ2 M29 M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSN SSZ T5K TEORI TN5 WUQ X7M XOL XPP ZGI ZKB ZMT ~G- 9DU AAYXX ABUFD ACIEU ACLOT CITATION EFKBS EFLBG ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c313t-ab7b94ce08df061553746b9bea86c36b725962e17e6da48c1ca437e0a34948f43 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485133600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0042-6989 1878-5646 |
| IngestDate | Fri Oct 03 00:06:40 EDT 2025 Sun Jun 29 01:31:19 EDT 2025 Sat Nov 29 07:55:26 EST 2025 Sat Jun 14 16:51:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chromatic VEP Visual pathways |
| Language | English |
| License | Copyright © 2025. Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c313t-ab7b94ce08df061553746b9bea86c36b725962e17e6da48c1ca437e0a34948f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40305940 |
| PQID | 3198303191 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3198303191 pubmed_primary_40305940 crossref_primary_10_1016_j_visres_2025_108609 elsevier_sciencedirect_doi_10_1016_j_visres_2025_108609 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Vision research (Oxford) |
| PublicationTitleAlternate | Vision Res |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Norcia, Appelbaum, Ales, Cottereau, Rossion (b0180) 2015; 15 Strasburger, Murray, Remkey (b0270) 1993; 8 Shapley, Kaplan, Soodak (b0240) 1981; 292 Gegenfurtner, Hawken (b0090) 1996; 19 Dougherty, Press, Wandell (b0070) 1999; 24 Epub 2016 Jul 21. PMID: 27443562. Li, Todo, Tang, Tang (b0150) 2022; 254 Gerth, Delahunt, Crognale, Werner (b0100) 2003; 3 Jones, Keck (b0130) 1978; 17 Adrian (b0005) 1944; 153 Hamilton, Bach, Heinrich, Hoffmann, Odom, McCulloch, Thompson (b0105) 2021; 142 Rabin, Switkes, Crognale, Schneck, Adams (b0200) 1994; 34 Schiller, Malpeli (b0225) 1978; 41 Barboni, Gomes, Souza, Rodrigues, Ventura, Silveira (b0015) 2013; 46 Garg, Li, Rashid, Callaway (b0085) 2019; 364 Souza, Gomes, Lacerda, Saito, Filho, Silveira (b0250) 2008; 25 Regan, Spekreijse (b0215) 1974; 14 Robson, Kulikowski (b0220) 2012; 29 Derrington, Krauskopf, Lennie (b0060) 1984; 357 Crognale, Switkes, Adams (b0040) 1997; 14 Van der Tweel, Spekreijse (b0295) 1969; 156 McDonald, Mannion, Goddard, Clifford (b0170) 2010; 10 Johnson, Hawken, Shapley (b0125) 2001; 4 Highsmith, Crognale (b0115) 2009; 119 Regan (b0205) 1966; 20 1–12. doi:10.1111/j.1748-1716.1960.tb01840.x. Marmoy, Viswanathan (b0160) 2021; 35 Stockman, Sharpe (b0265) 2000; 40 Derrington, Lennie (b0065) 1984; 357 Friedman, Zhou, von der Heydt (b0080) 2003; 548 Hubel, Wiesel (b0120) 1959; 148 Crognale, Teller, Motulsky, Deeb (b0050) 1998; 38 Hicks, Lee, Vidyasagar (b0110) 1983; 337 Gegenfurtner, Kiper, Beusmans, Carandini, Zaidi, Movshon (b0095) 1994; 11 Kamp A, Sem Jacobsen CW, Storm Van Leeuwen W & van der TWEEL L (1960). Cortical responses to modulated light in the human subject. MacLeod, Boynton (b0155) 1979; 69 Crognale, Switkes, Rabin, Schneck, Hægerström-Portnoy, Adams (b0045) 1993; 10 Shapley, Hawken (b0235) 2011; 51 Switkes, Crognale (b0275) 1999; 39 Flanagan, Cavanagh, Favreau (b0075) 1990; 30 Nunez, Gordon, Shapley (b0185) 2022; 42 Souza, Gomes, Saito, da Silva, Silveira (b0255) 2007; 48 Murray, Parry, Carden, Kulikowski (b0175) 1987; 1 Parry, Murray, Hadjizenonos (b0195) 1999; 39 Cavanagh, Anstis (b0025) 1991; 31 Chichilnisky, Heeger, Wandell (b0030) 1993; 33 Seidemann, Poirson, Wandell, Newsome (b0230) 1999; 24 Crognale (b0035) 2002; 2 Tobimatsu, Tomoda, Kato (b0285) 1996; 8 Berninger, Arden, Hogg, Frumkes (b0020) 1989; 73 Dawson (b0055) 1954; 6 (1), 1–9. Van Der Tweel, Lunel (b0290) 1965; 18 Shapley, Nunez, Gordon (b0245) 2019; 30 Adrian, Matthews (b0010) 1934; 57 Walter, Dovey, Shipton (b0300) 1946; 158 Wandell, Poirson, Newsome, Baseler, Boynton, Huk, Gandhi, Sharpe (b0305) 1999; 24 Regan (b0210) 1973; 13 Stockman, MacLeod, DePriest (b0260) 1991; 31 Teller (b0280) 1984; 24 Lee, Sun, Valberg (b0145) 2011; 589 Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., & Tormene, A. P. (2016). International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). McCullough (b0165) 1965; 149 Shapley (10.1016/j.visres.2025.108609_b0235) 2011; 51 Derrington (10.1016/j.visres.2025.108609_b0065) 1984; 357 Gegenfurtner (10.1016/j.visres.2025.108609_b0095) 1994; 11 Rabin (10.1016/j.visres.2025.108609_b0200) 1994; 34 Shapley (10.1016/j.visres.2025.108609_b0245) 2019; 30 Crognale (10.1016/j.visres.2025.108609_b0035) 2002; 2 Berninger (10.1016/j.visres.2025.108609_b0020) 1989; 73 Crognale (10.1016/j.visres.2025.108609_b0045) 1993; 10 Schiller (10.1016/j.visres.2025.108609_b0225) 1978; 41 Crognale (10.1016/j.visres.2025.108609_b0040) 1997; 14 Hubel (10.1016/j.visres.2025.108609_b0120) 1959; 148 Barboni (10.1016/j.visres.2025.108609_b0015) 2013; 46 Van Der Tweel (10.1016/j.visres.2025.108609_b0290) 1965; 18 10.1016/j.visres.2025.108609_b0135 Teller (10.1016/j.visres.2025.108609_b0280) 1984; 24 Shapley (10.1016/j.visres.2025.108609_b0240) 1981; 292 Switkes (10.1016/j.visres.2025.108609_b0275) 1999; 39 Flanagan (10.1016/j.visres.2025.108609_b0075) 1990; 30 Stockman (10.1016/j.visres.2025.108609_b0260) 1991; 31 Derrington (10.1016/j.visres.2025.108609_b0060) 1984; 357 Johnson (10.1016/j.visres.2025.108609_b0125) 2001; 4 Regan (10.1016/j.visres.2025.108609_b0215) 1974; 14 Hicks (10.1016/j.visres.2025.108609_b0110) 1983; 337 MacLeod (10.1016/j.visres.2025.108609_b0155) 1979; 69 Crognale (10.1016/j.visres.2025.108609_b0050) 1998; 38 Murray (10.1016/j.visres.2025.108609_b0175) 1987; 1 Li (10.1016/j.visres.2025.108609_b0150) 2022; 254 Seidemann (10.1016/j.visres.2025.108609_b0230) 1999; 24 Highsmith (10.1016/j.visres.2025.108609_b0115) 2009; 119 Nunez (10.1016/j.visres.2025.108609_b0185) 2022; 42 Strasburger (10.1016/j.visres.2025.108609_b0270) 1993; 8 Chichilnisky (10.1016/j.visres.2025.108609_b0030) 1993; 33 Tobimatsu (10.1016/j.visres.2025.108609_b0285) 1996; 8 Friedman (10.1016/j.visres.2025.108609_b0080) 2003; 548 Adrian (10.1016/j.visres.2025.108609_b0010) 1934; 57 Dougherty (10.1016/j.visres.2025.108609_b0070) 1999; 24 Lee (10.1016/j.visres.2025.108609_b0145) 2011; 589 Norcia (10.1016/j.visres.2025.108609_b0180) 2015; 15 Gerth (10.1016/j.visres.2025.108609_b0100) 2003; 3 Robson (10.1016/j.visres.2025.108609_b0220) 2012; 29 10.1016/j.visres.2025.108609_b0190 Walter (10.1016/j.visres.2025.108609_b0300) 1946; 158 Regan (10.1016/j.visres.2025.108609_b0205) 1966; 20 Dawson (10.1016/j.visres.2025.108609_b0055) 1954; 6 Van der Tweel (10.1016/j.visres.2025.108609_b0295) 1969; 156 Cavanagh (10.1016/j.visres.2025.108609_b0025) 1991; 31 Marmoy (10.1016/j.visres.2025.108609_b0160) 2021; 35 Gegenfurtner (10.1016/j.visres.2025.108609_b0090) 1996; 19 McCullough (10.1016/j.visres.2025.108609_b0165) 1965; 149 Souza (10.1016/j.visres.2025.108609_b0250) 2008; 25 Adrian (10.1016/j.visres.2025.108609_b0005) 1944; 153 Garg (10.1016/j.visres.2025.108609_b0085) 2019; 364 McDonald (10.1016/j.visres.2025.108609_b0170) 2010; 10 Stockman (10.1016/j.visres.2025.108609_b0265) 2000; 40 Hamilton (10.1016/j.visres.2025.108609_b0105) 2021; 142 Wandell (10.1016/j.visres.2025.108609_b0305) 1999; 24 Parry (10.1016/j.visres.2025.108609_b0195) 1999; 39 Souza (10.1016/j.visres.2025.108609_b0255) 2007; 48 Jones (10.1016/j.visres.2025.108609_b0130) 1978; 17 Regan (10.1016/j.visres.2025.108609_b0210) 1973; 13 |
| References_xml | – volume: 30 start-page: 769 year: 1990 end-page: 778 ident: b0075 article-title: Independent orientation-selective mechanisms for the cardinal directions of colour space – volume: 19 start-page: 394 year: 1996 end-page: 401 ident: b0090 article-title: Interaction of motion and color in the visual pathways – reference: 1–12. doi:10.1111/j.1748-1716.1960.tb01840.x. – volume: 8 start-page: 211 year: 1993 end-page: 234 ident: b0270 article-title: Sustained and transient mechanism in the steady-state visual evoked potential: Onset presentation compared to pattern reversal – volume: 69 start-page: 1183 year: 1979 end-page: 1186 ident: b0155 article-title: Chromaticity diagram showing cone excitation by stimuli of equal luminance – volume: 18 start-page: 587 year: 1965 end-page: 598 ident: b0290 article-title: Human visual responses to sinusoidaly modulated light – volume: 51 start-page: 701 year: 2011 end-page: 717 ident: b0235 article-title: Color in the Cortex—single- and double-opponent cells – volume: 364 start-page: 1275 year: 2019 end-page: 1279 ident: b0085 article-title: Color and orientation are jointly coded and spatially organized in primate primary visual cortex – volume: 149 start-page: 1115 year: 1965 end-page: 1116 ident: b0165 article-title: Color Adaptation of Edge-Detectors in the Human Visual System – volume: 4 start-page: 409 year: 2001 end-page: 416 ident: b0125 article-title: The spatial transformation of color in the primary visual cortex of the macaque monkey – volume: 35 start-page: 2386 year: 2021 end-page: 2405 ident: b0160 article-title: Clinical electrophysiology of the optic nerve and retinal ganglion cells – volume: 119 start-page: 59 year: 2009 end-page: 66 ident: b0115 article-title: Changes in chromatic pattern-onset VEP with full-body inversion – volume: 34 start-page: 2657 year: 1994 end-page: 2671 ident: b0200 article-title: Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing – volume: 158 start-page: 540 year: 1946 end-page: 541 ident: b0300 article-title: Analysis of the Electrical Response of the Human Cortex to Photic Stimulation – volume: 14 start-page: 89 year: 1974 end-page: 95 ident: b0215 article-title: Evoked potential indications of colour blindness – volume: 3 start-page: 171 year: 2003 ident: b0100 article-title: Topography of the chromatic pattern-onset VEP – volume: 337 start-page: 183 year: 1983 end-page: 200 ident: b0110 article-title: The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings – volume: 40 start-page: 1711 year: 2000 end-page: 1737 ident: b0265 article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype – volume: 39 start-page: 1823 year: 1999 end-page: 1831 ident: b0275 article-title: Comparison of color and luminance contrast: Apples versus oranges? – volume: 33 start-page: 2113 year: 1993 end-page: 2125 ident: b0030 article-title: Functional segregation of color and motion perception examined in motion nulling – volume: 6 start-page: 65 year: 1954 end-page: 84 ident: b0055 article-title: A summation technique for the detection of small evoked potentials – volume: 24 start-page: 901 year: 1999 end-page: 909 ident: b0305 article-title: Color signals in human motion-selective cortex – volume: 10 start-page: 1818 year: 1993 end-page: 1825 ident: b0045 article-title: Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies – volume: 30 start-page: 1 year: 2019 end-page: 7 ident: b0245 article-title: Cortical double-opponent cells and human color perception – volume: 42 start-page: 4380 year: 2022 end-page: 4393 ident: b0185 article-title: Signals from Single-Opponent Cortical Cells in the Human cVEP – volume: 15 start-page: 4 year: 2015 ident: b0180 article-title: The steady-state visual evoked potential in vision research: A review – volume: 39 start-page: 3491 year: 1999 end-page: 3497 ident: b0195 article-title: Spatio-temporal tuning of VEPs: Effect of mode of stimulation – volume: 10 start-page: 34 year: 2010 ident: b0170 article-title: Orientation-selective chromatic mechanisms in human visual cortex – volume: 148 start-page: 574 year: 1959 end-page: 591 ident: b0120 article-title: Receptive fields of single neurones in the cat’s striate cortex – volume: 1 start-page: 231 year: 1987 end-page: 244 ident: b0175 article-title: Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings – volume: 57 start-page: 355 year: 1934 end-page: 385 ident: b0010 article-title: The Berger rhythm: Potential changes from the occipital lobes in man – volume: 14 start-page: 2595 year: 1997 end-page: 2607 ident: b0040 article-title: Temporal response characteristics of the spatiochromatic visual evoked potential: Nonlinearities and departures from psychophysics – volume: 24 start-page: 1233 year: 1984 end-page: 1246 ident: b0280 article-title: Linking propositions – volume: 8 start-page: 241 year: 1996 end-page: 243 ident: b0285 article-title: Human VEPs to isoluminant chromatic and achromatic sinusoidal gratings: Separation of parvocellular components – volume: 153 start-page: 360 year: 1944 end-page: 362 ident: b0005 article-title: Brain Rhythms* – volume: 31 start-page: 189 year: 1991 end-page: 208 ident: b0260 article-title: The temporal properties of the human short-wave photoreceptors and their associated pathways – volume: 17 start-page: 652 year: 1978 end-page: 659 ident: b0130 article-title: Visual evoked response as a function of grating spatial frequency – volume: 548 start-page: 593 year: 2003 ident: b0080 article-title: The coding of uniform colour figures in monkey visual cortex – reference: Kamp A, Sem Jacobsen CW, Storm Van Leeuwen W & van der TWEEL L (1960). Cortical responses to modulated light in the human subject. – reference: (1), 1–9. – volume: 48 start-page: 3396 year: 2007 end-page: 3404 ident: b0255 article-title: Spatial Luminance Contrast Sensitivity Measured with Transient VEP: Comparison with Psychophysics and Evidence of Multiple Mechanisms – reference: Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., & Tormene, A. P. (2016). International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). – reference: . Epub 2016 Jul 21. PMID: 27443562. – volume: 2 start-page: 2 year: 2002 ident: b0035 article-title: Development, maturation, and aging of chromatic visual pathways: VEP results – volume: 357 start-page: 219 year: 1984 end-page: 240 ident: b0065 article-title: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque – volume: 25 start-page: 317 year: 2008 end-page: 325 ident: b0250 article-title: Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: Contribution of different visual pathways – volume: 46 start-page: 154 year: 2013 end-page: 163 ident: b0015 article-title: Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics – volume: 73 start-page: 502 year: 1989 end-page: 511 ident: b0020 article-title: Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results – volume: 142 start-page: 17 year: 2021 end-page: 24 ident: b0105 article-title: ISCEV extended protocol for VEP methods of estimation of visual acuity – volume: 29 start-page: 301 year: 2012 end-page: 313 ident: b0220 article-title: Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways – volume: 11 start-page: 455 year: 1994 end-page: 466 ident: b0095 article-title: Chromatic properties of neurons in macaque MT – volume: 13 start-page: 2381 year: 1973 end-page: 2402 ident: b0210 article-title: Evoked potentials specific to spatial patterns of luminance and colour – volume: 254 year: 2022 ident: b0150 article-title: The mechanism of orientation detection based on color-orientation jointly selective cells – volume: 24 start-page: 911 year: 1999 end-page: 917 ident: b0230 article-title: Color Signals in Area MT of the Macaque Monkey – volume: 292 start-page: 543 year: 1981 end-page: 545 ident: b0240 article-title: Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque – volume: 20 start-page: 238 year: 1966 end-page: 248 ident: b0205 article-title: Some characteristics of average steady-state and transient responses evoked by modulated light – volume: 357 start-page: 241 year: 1984 end-page: 265 ident: b0060 article-title: Chromatic mechanisms in lateral geniculate nucleus of macaque – volume: 38 start-page: 3377 year: 1998 end-page: 3385 ident: b0050 article-title: Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies – volume: 24 start-page: 893 year: 1999 end-page: 899 ident: b0070 article-title: Perceived speed of colored stimuli – volume: 41 start-page: 788 year: 1978 end-page: 797 ident: b0225 article-title: Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey – volume: 31 start-page: 2109 year: 1991 end-page: 2148 ident: b0025 article-title: The contribution of color to motion in normal and color-deficient observers – volume: 589 start-page: 59 year: 2011 end-page: 73 ident: b0145 article-title: Segregation of chromatic and luminance signals using a novel grating stimulus – volume: 156 start-page: 678 year: 1969 end-page: 695 ident: b0295 article-title: Signal transport and rectification in the human evoked-response system – volume: 46 start-page: 154 year: 2013 ident: 10.1016/j.visres.2025.108609_b0015 article-title: Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics publication-title: Braz J Med Biol Res doi: 10.1590/1414-431X20122428 – volume: 33 start-page: 2113 year: 1993 ident: 10.1016/j.visres.2025.108609_b0030 article-title: Functional segregation of color and motion perception examined in motion nulling publication-title: Vision Research doi: 10.1016/0042-6989(93)90010-T – volume: 548 start-page: 593 year: 2003 ident: 10.1016/j.visres.2025.108609_b0080 article-title: The coding of uniform colour figures in monkey visual cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2002.033555 – volume: 142 start-page: 17 year: 2021 ident: 10.1016/j.visres.2025.108609_b0105 article-title: ISCEV extended protocol for VEP methods of estimation of visual acuity publication-title: Doc Ophthalmol doi: 10.1007/s10633-020-09780-1 – volume: 57 start-page: 355 year: 1934 ident: 10.1016/j.visres.2025.108609_b0010 article-title: The Berger rhythm: Potential changes from the occipital lobes in man publication-title: Brain: A Journal of Neurology doi: 10.1093/brain/57.4.355 – volume: 24 start-page: 893 year: 1999 ident: 10.1016/j.visres.2025.108609_b0070 article-title: Perceived speed of colored stimuli publication-title: Neuron doi: 10.1016/S0896-6273(00)81036-3 – volume: 148 start-page: 574 year: 1959 ident: 10.1016/j.visres.2025.108609_b0120 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J Physiol doi: 10.1113/jphysiol.1959.sp006308 – volume: 156 start-page: 678 year: 1969 ident: 10.1016/j.visres.2025.108609_b0295 article-title: Signal transport and rectification in the human evoked-response system publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1969.tb14007.x – volume: 119 start-page: 59 year: 2009 ident: 10.1016/j.visres.2025.108609_b0115 article-title: Changes in chromatic pattern-onset VEP with full-body inversion publication-title: Doc Ophthalmol doi: 10.1007/s10633-009-9170-0 – volume: 48 start-page: 3396 year: 2007 ident: 10.1016/j.visres.2025.108609_b0255 article-title: Spatial Luminance Contrast Sensitivity Measured with Transient VEP: Comparison with Psychophysics and Evidence of Multiple Mechanisms publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.07-0018 – volume: 10 start-page: 1818 year: 1993 ident: 10.1016/j.visres.2025.108609_b0045 article-title: Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies publication-title: Journal of Optics Soc Am A, JOSAA doi: 10.1364/JOSAA.10.001818 – volume: 8 start-page: 211 year: 1993 ident: 10.1016/j.visres.2025.108609_b0270 article-title: Sustained and transient mechanism in the steady-state visual evoked potential: Onset presentation compared to pattern reversal publication-title: Clin Vision Sci – volume: 14 start-page: 89 year: 1974 ident: 10.1016/j.visres.2025.108609_b0215 article-title: Evoked potential indications of colour blindness publication-title: Vision Research doi: 10.1016/0042-6989(74)90120-5 – volume: 30 start-page: 1 year: 2019 ident: 10.1016/j.visres.2025.108609_b0245 article-title: Cortical double-opponent cells and human color perception publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2019.04.001 – volume: 18 start-page: 587 year: 1965 ident: 10.1016/j.visres.2025.108609_b0290 article-title: Human visual responses to sinusoidaly modulated light publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(65)90076-3 – volume: 158 start-page: 540 year: 1946 ident: 10.1016/j.visres.2025.108609_b0300 article-title: Analysis of the Electrical Response of the Human Cortex to Photic Stimulation publication-title: Nature doi: 10.1038/158540a0 – volume: 51 start-page: 701 year: 2011 ident: 10.1016/j.visres.2025.108609_b0235 article-title: Color in the Cortex—single- and double-opponent cells publication-title: Vision Research doi: 10.1016/j.visres.2011.02.012 – volume: 15 start-page: 4 year: 2015 ident: 10.1016/j.visres.2025.108609_b0180 article-title: The steady-state visual evoked potential in vision research: A review publication-title: Journal of Vision doi: 10.1167/15.6.4 – volume: 6 start-page: 65 year: 1954 ident: 10.1016/j.visres.2025.108609_b0055 article-title: A summation technique for the detection of small evoked potentials publication-title: Electroencephalography & Clinical Neurophysiology doi: 10.1016/0013-4694(54)90007-3 – volume: 153 start-page: 360 year: 1944 ident: 10.1016/j.visres.2025.108609_b0005 article-title: Brain Rhythms* publication-title: Nature doi: 10.1038/153360a0 – volume: 149 start-page: 1115 year: 1965 ident: 10.1016/j.visres.2025.108609_b0165 article-title: Color Adaptation of Edge-Detectors in the Human Visual System publication-title: Science doi: 10.1126/science.149.3688.1115 – volume: 40 start-page: 1711 year: 2000 ident: 10.1016/j.visres.2025.108609_b0265 article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype publication-title: Vision Research doi: 10.1016/S0042-6989(00)00021-3 – volume: 14 start-page: 2595 year: 1997 ident: 10.1016/j.visres.2025.108609_b0040 article-title: Temporal response characteristics of the spatiochromatic visual evoked potential: Nonlinearities and departures from psychophysics publication-title: Journal of Optics Soc Am A, JOSAA doi: 10.1364/JOSAA.14.002595 – volume: 364 start-page: 1275 year: 2019 ident: 10.1016/j.visres.2025.108609_b0085 article-title: Color and orientation are jointly coded and spatially organized in primate primary visual cortex publication-title: Science doi: 10.1126/science.aaw5868 – volume: 24 start-page: 901 year: 1999 ident: 10.1016/j.visres.2025.108609_b0305 article-title: Color signals in human motion-selective cortex publication-title: Neuron doi: 10.1016/S0896-6273(00)81037-5 – volume: 38 start-page: 3377 year: 1998 ident: 10.1016/j.visres.2025.108609_b0050 article-title: Severity of color vision defects: Electroretinographic (ERG), molecular and behavioral studies publication-title: Vision Research doi: 10.1016/S0042-6989(97)00425-2 – volume: 20 start-page: 238 year: 1966 ident: 10.1016/j.visres.2025.108609_b0205 article-title: Some characteristics of average steady-state and transient responses evoked by modulated light publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(66)90088-5 – volume: 11 start-page: 455 year: 1994 ident: 10.1016/j.visres.2025.108609_b0095 article-title: Chromatic properties of neurons in macaque MT publication-title: Vis Neurosci doi: 10.1017/S095252380000239X – volume: 73 start-page: 502 year: 1989 ident: 10.1016/j.visres.2025.108609_b0020 article-title: Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results publication-title: Br J Ophthalmol doi: 10.1136/bjo.73.7.502 – volume: 34 start-page: 2657 year: 1994 ident: 10.1016/j.visres.2025.108609_b0200 article-title: Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing publication-title: Vision Research doi: 10.1016/0042-6989(94)90222-4 – volume: 3 start-page: 171 year: 2003 ident: 10.1016/j.visres.2025.108609_b0100 article-title: Topography of the chromatic pattern-onset VEP publication-title: Journal of vision doi: 10.1167/3.2.5 – volume: 29 start-page: 301 year: 2012 ident: 10.1016/j.visres.2025.108609_b0220 article-title: Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways publication-title: Visual Neuroscience doi: 10.1017/S0952523812000351 – ident: 10.1016/j.visres.2025.108609_b0135 doi: 10.1111/j.1748-1716.1960.tb01840.x – volume: 69 start-page: 1183 year: 1979 ident: 10.1016/j.visres.2025.108609_b0155 article-title: Chromaticity diagram showing cone excitation by stimuli of equal luminance publication-title: Journal of Optics Soc Am, JOSA doi: 10.1364/JOSA.69.001183 – volume: 254 year: 2022 ident: 10.1016/j.visres.2025.108609_b0150 article-title: The mechanism of orientation detection based on color-orientation jointly selective cells publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109715 – volume: 39 start-page: 1823 year: 1999 ident: 10.1016/j.visres.2025.108609_b0275 article-title: Comparison of color and luminance contrast: Apples versus oranges? publication-title: Vision Research doi: 10.1016/S0042-6989(98)00219-3 – volume: 24 start-page: 911 year: 1999 ident: 10.1016/j.visres.2025.108609_b0230 article-title: Color Signals in Area MT of the Macaque Monkey publication-title: Neuron doi: 10.1016/S0896-6273(00)81038-7 – volume: 337 start-page: 183 year: 1983 ident: 10.1016/j.visres.2025.108609_b0110 article-title: The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings publication-title: J Physiol doi: 10.1113/jphysiol.1983.sp014619 – volume: 41 start-page: 788 year: 1978 ident: 10.1016/j.visres.2025.108609_b0225 article-title: Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey publication-title: J Neurophysiol doi: 10.1152/jn.1978.41.3.788 – volume: 35 start-page: 2386 year: 2021 ident: 10.1016/j.visres.2025.108609_b0160 article-title: Clinical electrophysiology of the optic nerve and retinal ganglion cells publication-title: Eye doi: 10.1038/s41433-021-01614-x – volume: 30 start-page: 769 year: 1990 ident: 10.1016/j.visres.2025.108609_b0075 article-title: Independent orientation-selective mechanisms for the cardinal directions of colour space publication-title: Vision Research doi: 10.1016/0042-6989(90)90102-Q – volume: 10 start-page: 34 year: 2010 ident: 10.1016/j.visres.2025.108609_b0170 article-title: Orientation-selective chromatic mechanisms in human visual cortex publication-title: Journal of Vision doi: 10.1167/10.12.34 – volume: 31 start-page: 2109 year: 1991 ident: 10.1016/j.visres.2025.108609_b0025 article-title: The contribution of color to motion in normal and color-deficient observers publication-title: Vision Research doi: 10.1016/0042-6989(91)90169-6 – volume: 13 start-page: 2381 year: 1973 ident: 10.1016/j.visres.2025.108609_b0210 article-title: Evoked potentials specific to spatial patterns of luminance and colour publication-title: Vision Research doi: 10.1016/0042-6989(73)90237-X – volume: 31 start-page: 189 year: 1991 ident: 10.1016/j.visres.2025.108609_b0260 article-title: The temporal properties of the human short-wave photoreceptors and their associated pathways publication-title: Vision Research doi: 10.1016/0042-6989(91)90111-H – volume: 357 start-page: 219 year: 1984 ident: 10.1016/j.visres.2025.108609_b0065 article-title: Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque publication-title: J Physiol doi: 10.1113/jphysiol.1984.sp015498 – volume: 8 start-page: 241 year: 1996 ident: 10.1016/j.visres.2025.108609_b0285 article-title: Human VEPs to isoluminant chromatic and achromatic sinusoidal gratings: Separation of parvocellular components publication-title: Brain Topogr doi: 10.1007/BF01184777 – volume: 589 start-page: 59 year: 2011 ident: 10.1016/j.visres.2025.108609_b0145 article-title: Segregation of chromatic and luminance signals using a novel grating stimulus publication-title: J Physiol doi: 10.1113/jphysiol.2010.188862 – volume: 1 start-page: 231 year: 1987 ident: 10.1016/j.visres.2025.108609_b0175 article-title: Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings publication-title: Clinical vision sciences – volume: 292 start-page: 543 year: 1981 ident: 10.1016/j.visres.2025.108609_b0240 article-title: Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque publication-title: Nature doi: 10.1038/292543a0 – volume: 4 start-page: 409 year: 2001 ident: 10.1016/j.visres.2025.108609_b0125 article-title: The spatial transformation of color in the primary visual cortex of the macaque monkey publication-title: Nat Neurosci doi: 10.1038/86061 – volume: 24 start-page: 1233 year: 1984 ident: 10.1016/j.visres.2025.108609_b0280 article-title: Linking propositions publication-title: Vision Research doi: 10.1016/0042-6989(84)90178-0 – volume: 17 start-page: 652 year: 1978 ident: 10.1016/j.visres.2025.108609_b0130 article-title: Visual evoked response as a function of grating spatial frequency publication-title: Invest Ophthalmol Vis Sci – volume: 25 start-page: 317 year: 2008 ident: 10.1016/j.visres.2025.108609_b0250 article-title: Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: Contribution of different visual pathways publication-title: Visual Neuroscience doi: 10.1017/S0952523808080243 – volume: 2 start-page: 2 year: 2002 ident: 10.1016/j.visres.2025.108609_b0035 article-title: Development, maturation, and aging of chromatic visual pathways: VEP results publication-title: Journal of Vision doi: 10.1167/2.6.2 – volume: 357 start-page: 241 year: 1984 ident: 10.1016/j.visres.2025.108609_b0060 article-title: Chromatic mechanisms in lateral geniculate nucleus of macaque publication-title: J Physiol doi: 10.1113/jphysiol.1984.sp015499 – ident: 10.1016/j.visres.2025.108609_b0190 doi: 10.1007/s10633-016-9553-y – volume: 19 start-page: 394 year: 1996 ident: 10.1016/j.visres.2025.108609_b0090 article-title: Interaction of motion and color in the visual pathways publication-title: Trends in Neurosciences doi: 10.1016/S0166-2236(96)10036-9 – volume: 39 start-page: 3491 year: 1999 ident: 10.1016/j.visres.2025.108609_b0195 article-title: Spatio-temporal tuning of VEPs: Effect of mode of stimulation publication-title: Vision Research doi: 10.1016/S0042-6989(99)00098-X – volume: 42 start-page: 4380 year: 2022 ident: 10.1016/j.visres.2025.108609_b0185 article-title: Signals from Single-Opponent Cortical Cells in the Human cVEP publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0276-22.2022 |
| SSID | ssj0007529 |
| Score | 2.4672017 |
| Snippet | •No contrast adaptation has been observed for cVEP amplitude over the 60 s period.•Alternating orientations of the grating patterns increase the amplitude of... Reversing, achromatic patterns generally produce large and characteristic evoked responses. However, pattern onsets produce large and reliable evoked... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 108609 |
| SubjectTerms | Adult Chromatic VEP Color Perception - physiology Contrast Sensitivity - physiology Electroencephalography Evoked Potentials, Visual - physiology Female Humans Male Pattern Recognition, Visual - physiology Photic Stimulation - methods Visual pathways Young Adult |
| Title | Alternating pattern orientation or phase can increase the amplitude of the visual evoked potential |
| URI | https://dx.doi.org/10.1016/j.visres.2025.108609 https://www.ncbi.nlm.nih.gov/pubmed/40305940 https://www.proquest.com/docview/3198303191 |
| Volume | 231 |
| WOSCitedRecordID | wos001485133600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1878-5646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007529 issn: 0042-6989 databaseCode: AIEXJ dateStart: 20240610 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgQ4gXBBuXcZmMhHipUiWxE9uPERoCBBMSZepbZCcO7TqSqulK4ddzfElSaZq4SLxEqdXESc6X42Pn-85B6KXmXKRChQErSpigEMUCFdEk4IQWlEqqhS33dvaBnZ7y6VR88jzd1pYTYHXNt1ux_K-mhjYwtpHO_oW5-5NCA-yD0WELZoftHxk-u_BrfEZmbrNnQkS4mnuNkdkfLWeytXyv0bw2USP8MPGnNOxyk-uyIw5s5q1Rl-hNs4C4dNmsDbXI9-8D2jOrTR_5nEEzm7106wjzwxLDyhNyv7ezAYwTuZGLRePk2dkFuN6fA2to1XytO6azI_aPsvHuCkWcDEwqt2zWSWcGnpJ1xTQOTPXKXVccuxHhilt3KwznY7htuJ-x6cSWiArFMIz15MLPdl4IZ45NsQdmUg3sxywR4PP2s3cn0_f9SM2SWHQSJXNAJ620_L-rfV0Xulw3NbEhyuQeuuvnFjhzmLiPbuj6AB1mgIXm2w_8Clu2r_2McoBuf_SkikOkdhCDPWLwDmJgH1vEYEAM7hCDASC4RwxuKtvgEIMdYnCPmAfoy5uTyeu3gS-9ERQkIutAKqYELXTIy8oEvQlhNFVCacnTgqSKxaZqk46YTktJeREVkhKmQ2myHfGKkodor25q_RjhqirhveeEWL0LCRWXFS_jRLNUlpWKjlDQPdV86TKs5B318Dx3VsiNFXJnhSPEukef-yjRRX85oOU3R77oLJWDEzVfxmStm8s2h3GIE6Png6t55EzYXws1Q6Kg4ZN_7vcpujO8Fs_Q3np1qZ-jW8VmDX89RjfZlB97aP4Ca_mlpQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+pattern+orientation+or+phase+can+increase+the+amplitude+of+the+visual+evoked+potential&rft.jtitle=Vision+research+%28Oxford%29&rft.au=Ara%2C+Jawshan&rft.au=Tavakkoli%2C+Alireza&rft.au=Crognale%2C+Michael+A.&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0042-6989&rft.volume=231&rft_id=info:doi/10.1016%2Fj.visres.2025.108609&rft.externalDocID=S0042698925000707 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6989&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6989&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6989&client=summon |